импульсная рентгеновская трубка
Классы МПК: | H01J35/00 Рентгеновские трубки |
Автор(ы): | Бодров Александр Иванович (RU), Меркулов Борис Петрович (RU), Николюкин Юрий Валерьевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Научно-исследовательский институт газоразрядных приборов "Плазма" (ОАО "Плазма") (RU) |
Приоритеты: |
подача заявки:
2012-12-11 публикация патента:
10.05.2014 |
Изобретение относится к области рентгеновской техники и может быть использовано при разработке импульсных рентгеновских трубок для использования в малогабаритных рентгеновских аппаратах, в частности для медицинской диагностики и лечения заболеваний, а также в других областях техники. Создание острофокусной импульсной рентгеновской трубки с высокой долговечностью, обеспечивающей диаметр фокусного пятна не более 1,5 мм, достигается тем, что в известной импульсной рентгеновской трубке, содержащей металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом с осесимметричным отверстием относительно анода, выполненного в виде цилиндрического стержня, переходящего в конус, например, со скругленной вершиной, и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием, соосно первому катоду, размещенному в непосредственной близости от вершины анода, введен второй катод, расположенный ниже первого катода и имеющий осевое отверстие, через которое в направлении окна проходит конусная часть анода, при этом диаметр второго катода равен диаметру отверстия Д первого катода, а расстояние между катодами выбрано таким, чтобы диаметр сечения анода d плоскостью расположения второго катода превышал диаметр основания, например, скругленной вершины d1 анода не более чем на 1 мм, отношение диаметра сечения анода d плоскостью расположения второго катода к диаметру Д отверстия в нем находилось в пределах 0,37±25%, а угол конусной части анода лежал в интервале от 10° до 20°. Технический результат - повышение срока службы устройства. 2 ил.
Формула изобретения
Импульсная рентгеновская трубка, содержащая металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом с осесимметричным отверстием относительно анода, выполненного в виде цилиндрического стержня, переходящего в конус, например, со скругленной вершиной, и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием, отличающаяся тем, что соосно первому катоду, размещенному в непосредственной близости от вершины анода, введен второй катод, расположенный ниже первого катода и имеющий осевое отверстие, через которое в направлении окна проходит конусная часть анода, при этом диаметр отверстия второго катода равен диаметру отверстия Д первого катода, а расстояние между катодами выбрано таким, чтобы диаметр сечения анода d плоскостью расположения второго катода превышал диаметр основания, например, скругленной вершины d1 анода не более чем на 1 мм, отношение диаметра сечения анода d плоскостью расположения второго катода к диаметру Д отверстия в нем находилось в пределах 0,37±25%, а угол сужения конусной части анода лежал в интервале от 10° до 20°.
Описание изобретения к патенту
Изобретение относится к области рентгеновской техники и может быть использовано при разработке импульсных рентгеновских трубок для использования в малогабаритных рентгеновских аппаратах, в частности для медицинской диагностики и лечения заболеваний, а также в других областях техники.
Известна острофокусная импульсная рентгеновская трубка, состоящая из катода, включающего шайбу из термостойкого диэлектрика, на которой расположена гребенка, образованная металлической шайбой, имеющей радиальные прорези, расходящиеся от центра, с внутренним диаметром больше, чем внутренний диаметр диэлектрической шайбы, анода, предназначенного для торможения электронного пучка и генерации рентгеновского излучения, выполненного в виде стержня, заканчивающегося конической поверхностью, вершина которой имеет форму полусферы и проходит по оси отверстия диэлектрической шайбы, так чтобы торец анода выступал за плоскость диэлектрической шайбы, на которой установлена гребенка, на расстояние, равное величине радиуса полусферы токоввода для подачи высокого импульсного напряжения, герметичного корпуса, выполненного из изолирующего материала, с окном для вывода рентгеновского излучения [патент РФ № 2174726, H01J 35/00, Н05G 1/02, 2001 г.].
Такая конструкция обеспечивает пространственную равномерность рентгеновского излучения, стабильного от импульса к импульсу за счет множества источников электронов, равномерно расположенных по окружности в местах касания металлических концов гребенки с диэлектрической шайбой, где при подаче импульсного напряжения возникает высокая напряженность электрического поля, что вызывает разряд в микрозазорах между металлом и диэлектриком. К достоинству рентгеновской трубки следует отнести малый размер фокусного пятна 1,2 мм, что в 2-2,5 раз меньше, чем у рентгеновских трубок ИМА-2 и ИМА-5, используемых в большинстве импульсных рентгеновских аппаратах. Малый размер фокусного пятна позволяет осуществлять контроль объектов с повышенной разрешающей способностью за счет меньшей геометрической нерезкости.
Основным недостатком данной конструкции рентгеновской трубки является ее небольшой срок службы при работе в импульсных рентгеновских аппаратах для дефектоскопии металлоконструкций, что связано с отсутствием в данной рентгеновской трубке хорошего теплоотвода, так как она выполнена в металлостеклянном исполнении и все металлические детали за исключением анода и катода изготовлены из прецизионного сплава (29НК), имеющего одинаковый со стеклом коэффициент линейного термического расширения (КЛТР) с очень низкой теплопроводностью.
Отсутствие в этой рентгеновской трубке хорошего теплоотвода значительно ограничивает срок службы при работе в жестких энергетических режимах. Внутренняя поверхность изолятора конструктивно не защищена от попадания продуктов эрозии материала электродов, что ограничивает электрическую прочность и соответственно долговечность.
Известна также импульсная рентгеновская трубка, содержащая металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом, через отверстие в центре которого в направлении окна проходит острийный анод, первый защитный экран в виде цилиндрического стакана с отверстием в центре дна, соединенный с корпусом и ограничивающий объем, в котором соосно расположены острийный анод и второй защитный экран в виде диска, вывод анода, проходящий через отверстие в дне первого экрана в полость изолятора и соединенный с его меньшим основанием [Л.Я.Морговский, Е.А.Пеликс. Импульсная рентгенография. Аппараты серии «Арина», ООО «Спектрофлэш», Санкт-Петербург, 1999 г.].
Преимуществом данной рентгеновской трубки является ее простота, низкая себестоимость и малый вес. В данной конструкции цилиндрический экран и защитный экран в виде диска, расположенный на выводе анода, защищают внутреннюю поверхность изолятора от напыления продуктами эрозии материала электродов. Однако для обеспечения электропрочности рентгеновской трубки цилиндрический экран не может быть глубоко внедрен в объем изолятора, поэтому его экранирующие действия неэффективны. К тому же он выполнен из ковара (29НК), обладающего низкой теплопроводностью, и не имеет контакта с внешней средой, так как находится внутри вакуумной оболочки. В процессе работы рентгеновской трубки цилиндрический экран сильно разогревается из-за плохого теплоотвода во внешнюю среду, поэтому продукты эрозии материалов электродов плохо осаждаются на внутренней поверхности цилиндрического экрана, запыляя при этом нижнюю часть изолятора ближе к месту соединения изолятора с выводом анода, что значительно снижает электрическую прочность рентгеновской трубки, ограничивая ее долговечность. Наличие защитного экрана в виде диска, размещенного на выводе анода около его острия, не может обеспечить достаточную экранировку внутренней поверхности изолятора от продуктов напыления.
К недостаткам следует отнести большой размер фокусного пятна 2,5÷3,0 мм, определяемый сечением анода в плоскости расположения катода.
Наиболее близкой к предлагаемому изобретению является импульсная рентгеновская трубка, содержащая металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом с осесимметричным отверстием относительно анода, выполненного в виде цилиндрического стержня, переходящего в конус со скругленной вершиной, и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием [патент РФ № 2446508, H01J 35/00. 2012 г. - прототип].
В данной конструкции импульсной рентгеновской трубки выполнение ее внутренних элементов с заданной конфигурацией и с заданными геометрическими размерами предотвращает прямое воздействие продуктов эрозии материала электродов на внутреннюю поверхность изолятора, что снижает осаждение продуктов эрозии, обеспечивая, таким образом, большую долговечность. Диаметр фокусного пятна такой трубки определяется диаметром сечения конусной части анода в плоскости расположения катода и лежит в пределах 1,5÷2,5 мм.
Задачей данного изобретения является создание острофокусной импульсной рентгеновской трубки с высокой долговечностью, обеспечивающей диаметр фокусного пятна не более 1,5 мм.
Указанный технический результат достигается тем, что в известной импульсной рентгеновской трубке, содержащей металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом с осесимметричным отверстием относительно анода, выполненного в виде цилиндрического стержня, переходящего в конус, например, со скругленной вершиной, и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием, соосно первому катоду, размещенному в непосредственной близости от вершины анода, введен второй катод, расположенный ниже первого катода и имеющий осевое отверстие, через которое в направлении окна проходит конусная часть анода, при этом диаметр отверстия второго катода равен диаметру отверстия Д первого катода, а расстояние между катодами выбрано таким, чтобы диаметр сечения анода d плоскостью расположения второго катода превышал диаметр основания, например, скругленной вершины d1 анода не более чем на 1 мм, отношение диаметра сечения анода d с плоскостью расположения второго катода к диаметру Д отверстия в нем находилось в пределах 0,37±25%, а угол конусной части анода лежал в интервале от 10° до 20°.
Импульсная рентгеновская трубка предлагаемой конструкции позволяет получить фокусное пятно диаметром не более 1,5 мм с большим ресурсом работы из-за расширения рабочей поверхности анода, вызванного наличием двух катодов, при угле конусной части анода , равном 10°÷20°.
Проведенный заявителем анализ уровня техники, включающий поиск по патентам и научно-техническим источникам информации, позволил установить, что не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения. Сравнение с прототипом позволило выявить совокупность существенных признаков по отношению к усматриваемому техническому результату, изложенных в формуле изобретения.
Следовательно, заявленное изобретение отвечает требованию новизна по действующему законодательству.
Для проверки изобретательского уровня был проведен дополнительный поиск известных решений, результаты которого показывают, что заявленное изобретение не следует для специалиста явным образом из известного уровня техники, так как не выявлены технические решения, позволяющие получить малый диаметр фокусного пятна и большой ресурс работы импульсной рентгеновской трубки за счет того, что соосно первому катоду, размещенному в непосредственной близости от вершины анода, введен второй катод, расположенный ниже первого катода и имеющий осевое отверстие, через которое в направлении окна проходит конусная часть анода, при этом диаметр отверстия второго катода равен диаметру отверстия Д первого катода, а расстояние между катодами выбрано таким, чтобы диаметр сечения анода d плоскостью расположения второго катода превышал диаметр основания, например, скругленной вершины d1 анода не более чем на 1 мм, отношение диаметра сечения анода d плоскостью расположения второго катода к диаметру Д отверстия в нем находилось в пределах 0,37±25%, а угол конусной части анода лежал в интервале от 10° до 20°.
Следовательно, заявленное изобретение соответствует требованию «изобретательский уровень» по действующему законодательству.
На фиг.1 представлен один из вариантов заявленной импульсной рентгеновской трубки.
На фиг.2 показана зависимость интегральной дозы рентгеновского излучения от отношения диаметра сечения анода d плоскостью расположения второго катода к диаметру Д отверстия в нем.
Импульсная рентгеновская трубка (фиг.1) содержит металлический корпус 1 в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора 2, выполненного в виде полого усеченного конуса, расположенного вне корпуса 1, другое основание корпуса 1 соединено с окном 3, выполненным в виде цилиндра с дном из бериллия для вывода мягкого рентгеновского излучения, и через держатели 4 и 5 соответственно с первым 6 и вторым 7 катодами в виде плоских, тонких колец, выполненных, например, из вольфрама, уложенных на держателях 4 и 5 соосно острийному аноду 8, например из тантала, и закрепленных на держателях 4 и 5 тонкими металлическими кольцевыми дисками 9 и 10 соответственно посредством точечной сварки, два защитных экрана 11 и 12, закрывающих внутреннюю поверхность изолятора 2 от напыления продуктами эрозии материалов электродов, вывод 13 анода, проходящий по оси прибора и соединенный с меньшим основанием изолятора 2, штенгель 14 для откачки рентгеновской трубки, при этом один катод 6 установлен непосредственно у основания скругления вершины конусной части анода или несколько выше, а второй катод 7 - ниже от него так, чтобы диаметр сечения анода d в плоскости расположения катода 7 превышал диаметр основания скругления вершины d1 конусной части анода не более чем на 1 мм, d/Д=0,37±25%, а угол конусной части анода =10°÷20°.
При подаче ускоряющего импульса высокого напряжения на анод 8 (катоды 6 и 7 заземлены) в межэлектродном пространстве создается высокая напряженность электрического поля с максимальным значением в непосредственной близости от вершины конусной части анода и внутренней кромки отверстия в катоде 6, а также в межэлектродном пространстве между внутренней кромкой отверстия в катоде 7 и анодом 8, вызывающая автоэлектронную эмиссию с внутренних кромок отверстий катодов 6 и 7 и переходящую во взрывную эмиссию электронов с образованием потока электронов, двигающихся к аноду 8. В результате соударения электронов с анодом 8 и их торможения происходит генерация рентгеновского излучения.
При работе катода 6, расположенного у основания скругления вершины конусной части анода или несколько выше, диаметр фокусного пятна трубки равен примерно диаметру основания скругления вершины, а при работе второго катода 7 диаметр фокусного пятна трубки определяется диаметром сечения конусной части анода плоскостью расположения этого катода, поэтому максимальный фокус трубки определяется диаметром сечения анода с плоскостью расположения второго катода 7 и при выборе диаметра основания скругления вершины конусной части анода равного 0,5 мм, с учетом условий, оговоренных выше, составит не более 1,5 мм, что решает одну из поставленных задач - создание острофокусной импульсной рентгеновской трубки.
Поочередная работа катодов 6 и 7 значительно расширяет рабочую поверхность анода, что уменьшает эрозию материала анода и способствует увеличению долговечности в заданном эксплуатационном режиме.
Выбор одинаковых диаметров отверстий в катодах и угла конусной части анода в интервале 10°÷20° создает при работе трубки примерно равные условия срабатывания образованных ими промежутков, а в процессе тренировки импульсной рентгеновской трубки предлагаемой конструкции происходит выравнивание условий срабатывания трубки с разными катодами за счет выработки материала катодов. После чего трубка начинает работать с поочередным срабатыванием катодов с равной вероятностью, что обеспечивает значительное расширение рабочей поверхности анода и, следовательно, увеличение ресурса работы трубки. Рабочей поверхностью анода в этом случае является вся конусная поверхность от места ее сечения плоскостью расположения второго катода до вершины.
В процессе разработки импульсных рентгеновских трубок с острийным анодом (панорамного облучения) ИРТП-240, ИРТП3-150Д, ИРТП3-Д, ИРТП4-240Д была выявлена зависимость интегральной дозы рентгеновского излучения от отношения диаметра сечения острийного анода плоскостью расположения катода к диаметру отверстия в нем. На фиг.2 представлена эта зависимость D/Dmax=f(d/Д), где:
D - интегральная доза рентгеновского излучения;
Dmax - максимальная интегральная доза рентгеновского излучения;
d - диаметр сечения анода плоскостью расположения второго катода;
Д - диаметр отверстия в катоде.
Как видно из зависимости (фиг.2), наибольшая приведенная интегральная доза рентгеновского излучения соответствует значению d/Д 0,37, а при изменении этого соотношения в пределах 0,25<d/fl<0,5 приведенная интегральная доза не изменяется более чем на 10%, что соответствует d/Д=0,37±25%.
Условия, оговоренные в предлагаемой заявке, с целью получения острофокусной трубки с диаметром фокусного пятна не более 1,5 мм определяют угол конусной части анода по формуле:
=2·arctg(d-d1)/2h, где
d - диаметр сечения анода плоскостью расположения второго катода;
d1 - диаметр основания скругления вершины конусной части анода;
h - расстояние между плоскостью, проходящей через основание скругления вершины конусной части анода, и плоскостью расположения второго катода.
С конструктивной точки зрения для обеспечения максимальной рабочей поверхности анода и равномерной ее выработки целесообразно принимать h в пределах 2,5÷5,0 мм. Тогда, рассчитывая по формуле, имеем 10°-20°.
На основе выпускаемой ОАО Плазма , г.Рязань, базовой конструкции - трубки ИРТП-150Д при использовании заявленного изобретения были изготовлены и испытаны три макетных образца импульсной рентгеновской трубки с двумя катодами, расположенными осесимметрично относительно анода - один в плоскости, проходящей через основание скругления вершины конуса, а другой - ниже по оси на расстоянии 2,5 и 5,0 мм с разными углами конусной части анода. Во всех макетных образцах диаметр основания скругления вершины конусной части анода равен 0,5 мм, а диаметр отверстия в катодах равен 5,0 мм.
Сравнительные измерения диаметра фокусного пятна макетных образцов импульсных рентгеновских трубок с различными углами конусной части анода приведены в таблице 1.
Таблица 1 | |||
Угол конусной части анода , ° | Диаметр d, мм | Расстояние h, мм | Диаметр фокусного пятна F, мм |
10 | 1,37 | 5 | 1,45 |
20 | 1,38 | 2,5 | 1,5 |
30 | 1,84 | 2,5 | 2,1 |
Выбор угла конусной части анода менее 10° не целесообразен по конструктивным соображениям, т.к. уменьшается рабочая поверхность анода, что ограничивает ресурс работы рентгеновской трубки, а конусная часть анода, лежащая выше плоскости второго катода, ослабляет рентгеновское излучение по оси прибора. Как видно из таблицы 1, при увеличении угла конусной части анода свыше 20° диаметр фокусного пятна заметно увеличивается. Измерения диаметра фокусного пятна, приведенные в таблице 1, показали, что они практически определяются величиной диаметра сечения анода плоскостью расположения второго катода. Следовательно, для создания острофокусной трубки с диаметром фокусного пятна менее 1,5 мм необходимо выбирать угол конусной части анода от 10° до 20°.
Ресурсные испытания макетного образца импульсной рентгеновской трубки, изготовленного по материалам заявки, проводились в рентгеновском аппарате Пион-2М ООО Эридан-сервис , г.Уфа. Ресурс трубки составил 5·106 импульсов.
Таким образом, заявленное техническое решение позволяет создать острофокусную импульсную рентгеновскую трубку с диаметром фокуса менее 1,5 мм и высокой долговечностью - 5·10 6 импульсов, обеспечивающую высокий контраст изображений при работе с объектами разной оптической плотности, что дает возможность осуществлять контроль объектов с повышенной разрешающей способностью.
Класс H01J35/00 Рентгеновские трубки