способ прогнозирования землетрясений в пределах коллизионных зон континентов

Классы МПК:G01V9/00 Разведка или обнаружение способами, не отнесенными к группам  1/00
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный архитектурно-строительный университет" (ТГАСУ) (RU),
Мананков Анатолий Васильевич (RU),
Кара-Сал Ирина Дарымаевна (RU),
Кара-Сал Борис Комбуй-оолович (RU)
Приоритеты:
подача заявки:
2012-02-24
публикация патента:

Изобретение относится к области сейсмологии и может быть использовано для предсказания возможности возникновения землетрясений в пределах коллизионных зон континентов. Сущность: на основе многолетнего мониторинга определяют среднегодовые содержания в приземной атмосфере следующих поллютантов: пыль, оксиды углерода, азота и серы. В случае увеличения в приземной атмосфере годового суммарного содержания указанных поллютантов более чем на 20% по сравнению со среднегодовым значением, полученным за период проведенного мониторинга, делают вывод о возможности возникновения землетрясения. Технический результат: предсказание возможности возникновения землетрясений в пределах коллизионных зон континентов. 1 з.п.ф-лы.

Формула изобретения

1. Способ прогнозирования землетрясений в пределах коллизионных зон континентов, согласно которому осуществляют периодическую пространственно-временную регистрацию геохимического предвестника землетрясений, по результатам проведенного мониторинга выявляют вариации поступления в атмосферу геохимического предвестника и по аномальному изменению регистрируемой во времени величины геохимического предвестника выдают прогноз о возможности возникновения землетрясения, отличающийся тем, что в качестве геохимического предвестника землетрясения регистрируют в приземной атмосфере содержание пыли, оксидов углерода, азота и серы, на основе многолетнего мониторинга определяют их среднегодовое суммарное содержание в приземной атмосфере, а прогноз о возможности возникновения землетрясения выдают при увеличении в приземной атмосфере годового суммарного содержания указанных поллютантов свыше 20% по сравнению со среднегодовым значением, полученным за период проведенного мониторинга.

2. Способ по п.1, отличающийся тем, что средне- и короткосрочный прогноз землетрясений осуществляют по результатам регионального и локального атмогеохимического мониторинга на территории сейсмоактивных коллизионных зон континентов за период не менее 10 лет.

Описание изобретения к патенту

Изобретение относится к области сейсмологии на стыке с геоэкологией, а более конкретно - к способам предсказания вероятности возникновения землетрясений в пределах геоактивных коллизионных зон континентов по изменению атмогеохимических параметров.

Известны многочисленные способы предсказания и регистрации землетрясений. В целом, известные способы регистрации землетрясений можно объединить в следующие группы (http://nospe.ucoz.ru/index/0-225).

Первая группа способов основана на выявлении высокочувствительными приборами изменений электромагнитного поля твердой оболочки Земли, предшествующих землетрясениям, и является одним из вариантов предсказания землетрясений.

Известны способы прогнозирования по геофизическим параметрам, защищенные патентами на изобретения. Согласно способу прогнозирования параметров землетрясения по патенту на изобретение RU 2255356 измеряют характеристики магнитного и электрического полей околоземного космического пространства раздельными датчиками, установленными на космическом аппарате, на восходящем и нисходящем витках. Формируют синтезированную матрицу результатов, вычисляют дисперсию результирующего вектора и его фрактальную размерность. По изменению фрактальной размерности прогнозируют параметры землетрясений. По способу прогноза землетрясений по RU 2238575 осуществляют синхронные измерения интенсивности естественных импульсных электромагнитных полей Земли (ЕИЭМПЗ) в нескольких пунктах контролируемого региона. Выделяют аномальную территорию по наличию скачкообразного изменения интенсивности ЕИЭМПЗ по сравнению с суточными вариациями в те же календарные дни в сейсмически спокойные периоды. Прогнозируют начало землетрясения через 10-15 суток после начала регистрации скачкообразного изменения интенсивности ЕИЭМПЗ.

Вторая группа способов ориентирована на улавливание звуковых волн, проходящих в твердых горных породах земной коры. Впервые этот способ был применен в Италии вблизи известного вулкана Везувия. Звукоулавливающий аппарат погружался в Землю на некоторую глубину. В Калифорнии такой звукоприемный аппарат был установлен на глубине 110 м в колодце, заполненном водой. В отдельных случаях эти аппараты фиксировали усиление подземных шумов перед землетрясением. Но в большинстве случаев они не предсказывали землетрясений, что, по-видимому, было связано с несовершенством аппаратуры. Способ определения времени предстоящего землетрясения по заявке на изобретение RU 2004105334, МПК G01V 9/00 тоже основан на измерении акустических параметров (амплитуды форшоков, частоты и амплитуды акустических волн во всем диапазоне частот их появления, скорости импульсов акустических волн в поверхностном и глубинном слоях Земли и в атмосфере, времени между зарегистрированными импульсами) при возникновении сейсмических колебаний почвы. Сейсмодатчики согласно указанному способу устанавливают на скальных породах, окружающих контролируемый регион. Методы первых двух групп пока технически очень трудно осуществимы и не обладают нужной точностью предсказания района землетрясения.

Третья группа способов связана с изучением наклонов земной поверхности особыми высокочувствительными приборами - наклономерами. Эти методы нашли широкое применение в Японии. Они основаны на предположении, что перед землетрясением и в процессе этого катастрофического явления в зоне субдукции земной коры происходит некоторый, вполне фиксируемый, изгиб земной поверхности, вслед за которым совершается разрыв пластов на глубине, вызывающий землетрясение. Применяемые приборы - кварцевые деффиографы и водяные уровни - достаточно чувствительны для выявления таких наклонов. Приборы устанавливаются на глубине нескольких десятков метров и могут фиксировать изменение наклона поверхности до долей секунды. В ряде случаев действительно за 5 - 10 дней до землетрясения прибор фиксировал так называемую бурю наклонов, то есть более резкое, чем обычно, изменение наклона поверхности в различных направлениях. Но все эти изменения настолько малы, что трудно установить окончательно источники и факторы, которыми они генерируются. Эти способы не дают возможности предсказать с нужной точностью район землетрясения.

Четвертая группа включает способы изучения упругих свойств вещества внутри Земли в связи с увеличением сил сжатия перед землетрясением. Эти методы пока технически очень трудно осуществимы и широкого распространения еще не получили.

Новое открытие в природных явлениях - нагрев атмосферы перед сильным землетрясением в Японии было зафиксировано 18 мая 2011 года. По этому поводу исследователями из НАСА были опубликованы снимки из космоса тех районов Японии, где в начале марта 2011 года произошло сильное землетрясение. На снимках зафиксирован сильный нагрев атмосферы в дни, непосредственно предшествующие крупному землетрясению. Согласно комментариям представителей НАСА, в районе землетрясения в начале марта 2011 года в Японии в нижней атмосфере наблюдались аномальные аэрозольные поля, в результате чего происходил нагрев атмосферы и резкое изменение ее параметров. Эти данные пока проходят изучение и анализ (http://www.hainanwel/com/ forum/viewtopic.php?p=2143).

Известны также способы прогноза землетрясений по геохимическим параметрам. Способ (авт. св. СССР № 507844) включает периодическое измерение в местах разрыва сплошности горных пород концентраций радиогенных газов (гелия и аргона). Одновременно с этим измеряют величину теплового потока. О времени возникновения землетрясения судят по резкому изменению хода периодичности определяемых величин.

Наиболее близким к заявляемому способу, принятым за прототип, является способ прогнозирования землетрясений по патенту на изобретение RU 2145098, МПК G01V 1/00; G01V 9/00. Согласно этому способу в сейсмически активных районах осуществляют пространственно-временную регистрацию геохимического предвестника землетрясений - потока ртути в восходящем из земной коры почвенном газе. Величину потока ртути регистрируют на глубине 1 метра. Измерения проводят атомно-флуоресцентными фотометрами после предварительного накопления ртути на биспиральном золотом коллекторе. По результатам проведенного мониторинга выявляют вариации поступления в атмосферу паров ртути и по аномальному изменению регистрируемой во времени величины паров ртути прогнозируют возможность возникновения землетрясений.

Задача изобретения - поиск нового способа прогнозирования землетрясений в пределах коллизионных зон континентов на основе мониторинга пространственно-временной изменчивости содержания атмогеохимических предвестников землетрясений, отличающегося повышением точности.

Задача решается следующим образом.

Заявляемый в качестве изобретения способ прогнозирования землетрясений в пределах коллизионных зон континентов, как и прототип, включает периодическую пространственно-временную регистрацию геохимического предвестника землетрясений, выявление по результатам проведенного мониторинга вариаций поступления в атмосферу геохимического предвестника и выдачу прогноза о возможности возникновения землетрясения по аномальному изменению регистрируемой во времени величины геохимического предвестника.

В отличие от прототипа в качестве геохимического предвестника землетрясения в процессе атмогеохимического мониторинга регистрируют содержание в приземной атмосфере поллютантов, на основе многолетней статистики определяют их среднегодовое суммарное содержание в приземной атмосфере, а прогноз о возможности возникновения землетрясения выдают при увеличении годового содержания поллютантов в приземной атмосфере более чем на 20% по сравнению со среднегодовым значением, полученным за период проведенного мониторинга. Средне- и короткосрочный прогноз землетрясений осуществляют по суммарному значению таких поллютантов, как пыль, оксиды углерода, серы и азота, содержащихся в приземной атмосфере в качестве основных токсикантов. Прогноз землетрясений осуществляют по результатам регионального и локального атмогеохимического мониторинга на территории сейсмоактивных коллизионных зон континентов за период не менее 10 лет.

В уровне техники не обнаружены способы прогноза и регистрации землетрясений по суммарному значению основных поллютантов. Это подтверждает новизну и изобретательский уровень предложенного способа.

Как видно, способ основан на использовании результатов исследования динамики атмогеохимических показателей, включающих пространственно-временные особенности поведения основных поллютантов в приземной атмосфере конкретных коллизионных зон континентов.

Известные сведения о резком подъеме температуры, одновременных колебаниях упругих свойств жестких горных пород и физико-химических параметров верхних оболочек Земли, в первую очередь, подъем температуры приземной атмосферы над эпицентром землетрясений в коллизионных зонах, позволили авторам данной заявки на основе системных исследований межгеосферных взаимодействий сделать вывод о возможном воздействии этих природных процессов на атмогеохимические свойства воздушной атмосферы.

В пределах коллизионных поясов континентов сильные землетрясения являются результатом тектонических процессов по границам соприкасающихся литосферных плит вдоль долгоживущих геологических разломов. Как, например, в центральной Азии Сибирская литосферная плита подвергается воздействию «въезжающей» в нее Индийской плиты.

Землетрясение здесь и в подобных коллизионных поясах обусловлено, во-первых, быстрым (в геологическом времени) переходом потенциальной энергии, накопленной в упругодеформированных породах на глубине порядка 10 км (глубже залегают вполне пластичные массивы существенно гранитоидных разновозрастных коллизионных комплексов), в освобожденную сейсмическую энергию и, во-вторых, под воздействием высоких температур и давления изменением структуры пород. Под действием этих же природных катастрофических факторов происходит диспергация горных пород до уровня субмикрозернистых и наноразмерных взвешенных частиц, а также электризация и возникновение поллютантов с преобладанием электретов разных генетических классов: термоэлектретов, электроэлектретов, фотоэлектретов (при подземной грозе), радиационных электретов, трибоэлектретов и механоэлектретов (за счет трения пород), хемоэлектретов (при полимеризации и химической сшивке молекул диэлектриков). Поскольку основные поллютанты в воздушной атмосфере, по сути, являются электретами, то резкий скачок их концентраций предполагает возможность возникновения сильного землетрясения.

Были получены конкретные количественные параметры и обработаны статистические материалы регионального и локального экогеохимического мониторинга атмосферного воздуха за 14 лет, включая два крупных землетрясения - 1991 и 1995 гг. (аналогичных землетрясению 27 декабря 2011 г.) в коллизионной зоне, расположенной на территории Тувинской Республики РФ. Мониторинг проводился по основным поллютантам приземной атмосферы: пыль, оксиды серы, азота и углерода.

В теоретической геоэкологии важная роль придается процессам трансформации геологической среды и их последствиям, в частности геолого-тектоническим и геоморфологическим особенностям территории, в значительной мере формирующим основные природные факторы, ответственные за состояние атмосферного воздуха. Территория Республики Тыва (РТ) расположена в центре азиатского материка, является колоссально расчлененной горной страной с межгорными депрессиями сложного геологического строения. В целом колебания высот охватывают интервал от 250 до 4000 м. Горные хребты и нагорья четко расчленяются широтными и северо-западными долгоживущими глубинными разломами, которые местами хорошо декорируются депрессиями и долинами рек. Именно на пересечении разломов возникают напряжения горных массивов и центры землетрясений. Серии афтершоковых процессов составляют сотни более слабых сейсмических толчков, ощущаемых на огромной территории Сибири в течение нескольких месяцев.

По данным мониторинга и сейсмического районирования Геофизической службы РАН восточная часть Тувы, практически рядом с Кызылом, является наиболее сейсмоопасным районом: 9-балльная зона по сотрясаемости (видимый уровень разрушений) и магнитудой выше семи. Такие землетрясения повторяются в этом районе с периодичностью раз в десятки лет. За последние 20 лет на территории РТ зафиксировано 218 сейсмических событий. Из них два - в 1991 и в 1995 годах - были максимальной мощности, достигая 9 баллов.

Осуществление способа показано на конкретном примере.

В сейсмически активном коллизионном районе - территории Республики Тыва осуществляли пространственно-временную регистрацию геохимических предвестников землетрясений - базовых (или основных, постоянных) поллютантов (диоксида серы, оксида и диоксида углерода, диоксида азота, пыли) в приземной атмосфере на высоте 1,5-3,5 м от поверхности Земли в течение 14 лет. Продолжительность мониторинга определялась с учетом периодичности сильных землетрясений в данном регионе (как указывалось выше - 10 лет). Опробование проводилось на основных видах постов (стационарных, опорных, базовых и региональных фоновых станциях, а также маршрутных постах). Количественные измерения ингредиентов в пробах воздуха проводились с помощью хроматографических методов. Установка для аналитического газохроматографического разделения состоит из блока распределительных колонок, источника газа-носителя и устройства для фиксирования разделенных ингредиентов -блока детектора. Положение пиков на откалиброванной хроматограмме соответствует конкретному компоненту, а величина пика - его количеству. Обработка аналитических данных, полученных при многолетнем геомониторинге, предполагала расчет среднегодовых экогеохимических показателей: суммарного содержания пыли, оксидов серы, азота и углерода, а также суммарных годовых показателей загрязнения - Zc. По результатам проведенного геомониторинга выявлены вариации поступления основных ингредиентов в приземную атмосферу, а по аномальным значениям Zc - возможность прогнозирования серьезных землетрясений.

По результатам анализа изученных атмогеохимических данных за многие годы нами установлена корреляционная связь двух землетрясений с качеством атмосферы. Суммарные количества основных загрязнителей (пыль, оксиды углерода, серы и азота) на территории РТ в эти годы (1991 и 1995) резко возрастали до аномально высоких значений. Их содержание превышало порог - 20% от среднегодового значения, полученного в процессе геомониторинга.

Динамика загрязнения приземной атмосферы территории Республики Тыва, тыс. т/год отражена в таблице.

Таблица
№ п/пГод Республика Тыва
способ прогнозирования землетрясений в пределах коллизионных   зон континентов, патент № 2516617 способ прогнозирования землетрясений в пределах коллизионных   зон континентов, патент № 2516617 Годовые значения Zc, (тыс.т/год) основных поллютантов (пыли, оксидов углерода, азота и серы) Доля в % к среднегодовому за 14 лет значению основных поллютантов
1 1988100,8191,7
21989 105,3995,8
31990 146,39133,2
41991150,16 136,6
5 1992130,11 118,4
6 1993115,00104,6
71994 105,2095,7
81995 133,51121,5
91996113,31 103,1
10 199789,48 81,4
11 199887,6979,8
121999 87,9280,0
132000 87,2079,3
14200187,10 79,2

Как видно из таблицы, в годы сильных землетрясений (1991,1995) возрастание поллютантов - классических диэлектриков - скачкообразно превышает 20%. Высокие значения Zc в 1990 г. свидетельствуют о возможном начале подготовительных геодинамических процессов в коллизионном поясе РТ, которые сопровождаются формированием поллютантов - гетероэлектретов. Последние представлены термоэлектретами, электроэлектретами, образующимися при электризации в результате процессов поляризации при относительно слабых внешних полях, а также хемоэлектретами - продуктами реакций полимеризации в сложных породообразующих алюмосиликатных минералах.

Таким образом, полученные результаты однозначно подтверждают возможность использования данного способа как одного из наиболее достоверных для предсказания сильных землетрясений в континентальных коллизионных поясах.

Класс G01V9/00 Разведка или обнаружение способами, не отнесенными к группам  1/00

способ определения палеотемператур катагенеза безвитринитовых отложений по оптическим характеристикам микрофитофоссилий -  патент 2529650 (27.09.2014)
способ определения контуров промышленного оруденения золоторудного месторождения -  патент 2523766 (20.07.2014)
способ обнаружения возможности наступления катастрофических явлений -  патент 2520167 (20.06.2014)
способ прогнозирования зон развития вторичных коллекторов трещинного типа в осадочном чехле -  патент 2520067 (20.06.2014)
способ краткосрочного прогноза землетрясений -  патент 2519050 (10.06.2014)
способы, установки и изделия промышленного производства для обработки измерений струн, вибрирующих в флюидах -  патент 2518861 (10.06.2014)
способ определения трех компонент вектора смещений земной поверхности при разработке нефтяных и газовых месторождений -  патент 2517964 (10.06.2014)
способ прогноза и поисков месторождений углеводородов в ловушках антиклинального типа по топографическим картам дневной поверхности -  патент 2517925 (10.06.2014)
способ оценки ширины зоны динамического влияния активного разлома земной коры -  патент 2516593 (20.05.2014)
термозонд для измерения вертикального распределения температуры воды -  патент 2513635 (20.04.2014)
Наверх