система радиосвязи с подвижными объектами
Классы МПК: | H04B7/26 из которых по меньшей мере одна передвижная |
Автор(ы): | Кейстович Александр Владимирович (RU), Смирнов Андрей Андреевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Научно-производственное предприятие "Полет" (RU) |
Приоритеты: |
подача заявки:
2012-12-25 публикация патента:
10.06.2014 |
Изобретение относится к радиосистемам обмена данными и может быть использовано для помехозащищенного информационного обмена между подвижными системами обмена данными. Технический результат состоит в повышении помехозащищенности информационного обмена между подвижными воздушными объектами (ВО) и наземными комплексами (НК) в каналах «воздух-воздух» и «воздух-земля», в повышении точности воспроизведения рельефа земной поверхности и разрешающей способности расположенных на ней объектов при неизменной скорости передачи данных по широкополосной линии связи. Для этого выделяют из общего района сканирования наиболее интересные в вероятностном смысле участки и передают о нем полную информации на наземный комплекс. Вводят на подвижном воздушном объекте источник информации, который соединен двухсторонними связями через запоминающее устройство с бортовым вычислителем, а в НК - формирователь кода выбранного участка, подключенного двухсторонними связями к соответствующему входу/выходу одного из вычислителей АРМ. 1 ил.
Формула изобретения
Система радиосвязи с подвижными объектами, состоящая из наземного комплекса (НК), содержащего наземную антенну, радиостанцию, подключенную двухсторонними связями через аппаратуру передачи данных к соответствующему первому входу/выходу вычислителя автоматизированного рабочего места (АРМ), первый вход которого подключен к приемнику сигналов глобальных навигационных спутниковых систем, второй вход - к пульту управления АРМ, а выход - к монитору АРМ, формирователь типа ретранслируемых сообщений, соединенный с соответствующим входом вычислителя АРМ, концентратор, подключенный к локально-вычислительным сетям, которые в свою очередь подключены двухсторонними связями к соответствующим входам/выходам наземной направленной антенны, наземному антенному коммутатору, наземной аппаратуре связи, каждому из A АРМ, состоящих из вычислителя АРМ, соединенного с выходом пульта управления АРМ и с входом монитора АРМ, каждый из B блоков сопряжения состоит из последовательно соединенных второй наземной аппаратуры передачи данных и устройства сопряжения с каналом связи, вход/выход которого является входом/выходом системы, наземная направленная антенна через антенный коммутатор соединена двухсторонней связью с соответствующим входом/выходом наземной аппаратуры связи, наземный блок горизонтирования подключен к наземной направленной антенне механическими связями, N подвижных воздушных объектов (ВО), в состав каждого из которых входят бортовые датчики, бортовой приемник сигналов глобальных навигационных спутниковых систем, анализатор типа принимаемых сообщений и бортовой формирователь типа ретранслируемых сообщений, каждый из которых соединен с соответствующими входами бортового вычислителя, выход которого подключен к входу блока регистрации данных, а вход/выход - к двунаправленной шине системы управления подвижным воздушным объектом, бортовой вычислитель через последовательно соединенные бортовые аппаратуру передачи данных и радиостанцию подключен к бортовой антенне, бортовая аппаратура связи, бортовой антенный коммутатор, бортовая направленная антенна, бортовой блок горизонтирования, каждый из которых соединен двухсторонними связями с соответствующими входами/выходами бортового вычислителя, бортовой блок горизонтирования подключен к бортовой направленной антенне механическими связями, причем передача данных с НК обеспечивается по цепочке последовательно соединенных первого подвижного воздушного объекта, второго подвижного ВО и далее до N-го подвижного ВО, а передача данных с N-го подвижного ВО на НК осуществляется в обратном порядке, бортовая аппаратура связи через последовательно соединенные бортовой антенный коммутатор, бортовую направленную антенну через эфир подключена к наземной направленной антенне, в режимах ретрансляции и обмена данными бортовая направленная антенна 1-го подвижного ВО соединена по эфиру с бортовой направленной антенной 2-го подвижного ВО и так далее до N-го подвижного ВО, отличающаяся тем, что дополнительно введены на подвижном ВО - источник информации, соединенный двухсторонними связями через запоминающее устройство с бортовым вычислителем, а в НК - формирователь кода выбранного участка, подключенный двухсторонними связями к соответствующему входу/выходу одного из вычислителей АРМ.
Описание изобретения к патенту
Изобретение относится к радиосистемам обмена данными и может быть использовано для помехозащищенного информационного обмена между подвижными воздушными объектами (ВО) и наземными комплексами (НК) в каналах «воздух-воздух» и «воздух-земля».
В настоящее время за рубежом широко применяется система обмена сообщениями между бортовым радиоэлектронным оборудованием подвижных воздушных объектов (самолетов) и наземными службами (ACARS) [1]. В системе обеспечивается вызов на речевую связь и передача данных между подвижными воздушными объектами и наземными службами. Бортовой блок связи в этой системе представляет собой вычислитель. Основным каналом обмена текущей информации является канал метрового (MB) диапазона. Организацию обмена информацией между наземными службами и бортовыми системами осуществляет наземный комплекс. Он опрашивает подвижные воздушные объекты, находящиеся в зоне его обслуживания, и собирает с них необходимую информацию. Бортовая система работает в этом случае в режиме адресного опроса. Для того чтобы бортовая система могла работать в режиме адресного опроса, ей необходимо встать на обслуживание в наземной системе в режиме прямого доступа [2].
К недостаткам представленной системы обмена сообщениями между бортовым радиоэлектронным оборудованием ВО и наземными службами, следует отнести недостаточную помехозащищенность канала MB-диапазона и низкую скорость передачи информации.
Известна система радиосвязи с подвижными объектами [3], которая состоит из наземной и бортовой приемопередающих радиостанций, между которыми в соответствии с заложенными алгоритмами осуществляется обмен данными. В этой системе во время движения подвижные воздушные объекты, находящиеся в пределах радиогоризонта, обмениваются данными с наземным комплексом. Принимаемые наземной радиостанцией из канала "воздух-земля" сообщения через аппаратуру передачи данных" (АПД) поступают в вычислитель автоматизированного рабочего места (АРМ) на базе ПЭВМ, где в соответствии с принятым в системе протоколом обмена производится идентификация принятого в сообщении адреса с адресами подвижных воздушных объектов, хранящимися в памяти их бортовых вычислителей. При совпадении адреса подвижного воздушного объекта с хранящимся в списке адресом информация о местоположении, параметрах движения ВО и состоянии его датчиков выводится на экран монитора наземного АРМ. В вычислителе АРМ на базе ПЭВМ решается задача обеспечения постоянной радиосвязи со всеми N ВО. При выходе за пределы радиогоризонта хотя бы одного из ВО или приближении к границе зоны устойчивой радиосвязи, определяется программно один из ВО, который назначается ретранслятором сообщений. По результатам анализа местоположения и параметров движения остальных ВО определяются оптимальные пути доставки сообщений удаленному от НК за радиогоризонт выбранному подвижному воздушному объекту. Сообщение от НК через последовательную цепочку, состоящую из (N-1) воздушных объектов, может быть доставлено N-му ВО. Для этого на НК в формирователе типа ретранслируемых сообщений в заранее определенные разряды (заголовок) передаваемой кодограммы закладываются номер ВО, назначенного ретранслятором, и адреса подвижных воздушных объектов, обеспечивающих заданный трафик сообщения. Принятые на ВО сообщения анализируются в блоке анализа типа сообщений. После анализа решается вопрос о направлении данных по двунаправленной шине на систему управления объекта или ретрансляции их на соседний ВО.
В обычном режиме с НК, когда не требуется ретрансляция сигналов, осуществляется адресный опрос ВО путем формирования сообщения для передачи в канал радиосвязи в соответствии с протоколом обмена. Набираемое оператором (диспетчером) сообщение отображается на мониторе АРМ. На ВО после прохождения через бортовые антенну, радиостанцию, аппаратуру передачи данных сигнал поступает в бортовой вычислитель, где происходит идентификация принятого в сообщении адреса с собственным адресом подвижного воздушного объекта. Далее сообщение передается в блок анализа типа ретранслируемого сообщения, где происходит дешифрация полученного заголовка (служебной части) сообщения, и определяется, в каком режиме должна работать аппаратура ВО. Информационная часть сообщения записывается в память бортового вычислителя и при необходимости выводится на экран блока регистрации данных.
Формирователи типа ретранслируемых сообщений позволяют обеспечить обмен цифровыми данными по каналу "воздух-земля" взамен существующей речевой информации. Они предназначены для выбора элементов сообщений разрешения/информации/запроса, которые соответствуют принятой речевой фразеологии, и набора произвольного текста. Отображение набираемых и принятых сообщений осуществляется на блоке регистрации данных ВО и мониторе АРМ НК соответственно. Сообщения с выходов приемников сигналов глобальных навигационных спутниковых систем записываются в память наземного и бортового вычислителей с привязкой к глобальному времени и используются для расчета навигационных характеристик и параметров движения каждого ВО. Принятые на НК навигационные сообщения от всех ВО обрабатываются в вычислителе и выводятся на экран монитора АРМ.
Однако аналогу присущи следующие недостатки.
Сигналы информационного обмена с ВО в каналах «воздух-земля» в MB-диапазоне имеют ограниченную скорость передачи. В современных линиях передачи данных «воздух-земля» VDL-2 и VDL-4 скорость передачи составляет всего 31,5 и 19,2 кбит/с соответственно.
Для некоторых практических применений, например, при передаче сигналов картографирования поверхности Земли, требуемая скорость передачи информации должна составлять не менее 400 кбит/с. Радиолинию передачи данных с такой скоростью в соответствии с международными нормами можно организовать только в диапазоне сверхвысоких частот (СВЧ-диапазоне).
Наиболее близким по назначению и большинству существенных признаков является "Система радиосвязи с подвижными объектами" [4], которая и принята за прототип. Система состоит из наземного комплекса, содержащего наземную антенну, радиостанцию, подключенную двухсторонними связями через аппаратуру передачи данных (АПД) к соответствующему первому входу/выходу вычислителя автоматизированного рабочего места (АРМ). Первый вход вычислителя АРМ подключен к приемнику сигналов глобальных навигационных спутниковых систем, второй вход - к пульту управления АРМ, а выход - к монитору АРМ. Формирователь типа ретранслируемых сообщений соединен с соответствующим входом вычислителя АРМ. Концентратор подключен к локально-вычислительным сетям (ЛВС), которые в свою очередь соединены двухсторонними связями с соответствующими входами/выходами наземной направленной антенны, наземному антенному коммутатору, наземной аппаратуре связи, каждому из A АРМ, состоящих из вычислителя АРМ, соединенного с выходом пульта управления АРМ и с входом монитора АРМ. Каждый из B блоков сопряжения состоит из последовательно соединенных второй наземной аппаратуры передачи данных и устройства сопряжения с каналом связи, выход которого является входом/выходом системы. Наземная направленная антенна через антенный коммутатор соединена двухсторонней связью с соответствующим входом/выходом наземной аппаратуры связи. Наземный блок горизонтирования подключен к наземной направленной антенне механическими связями.
В состав каждого из N подвижных воздушных объектов входят бортовые датчики, приемник сигналов глобальных навигационных спутниковых систем, анализатор типа принимаемых сообщений и бортовой формирователь типа ретранслируемых сообщений, каждый из которых соединен с соответствующими входами бортового вычислителя. Выход бортового вычислителя подключен к входу блока регистрации данных, а вход/выход - к двунаправленной шине системы управления подвижным воздушным объектом. Бортовой вычислитель через последовательно соединенные бортовые аппаратуру передачи данных и радиостанцию подключен к бортовой антенне. Бортовая аппаратура связи, бортовая направленная антенна, бортовой антенный коммутатор, бортовой блок горизонтирования соединены двухсторонними связями с соответствующими входами/выходами бортового вычислителя. Бортовой блок горизонтирования подключен к бортовой направленной антенне механическими связями. Передача данных с НК обеспечивается по цепочке последовательно соединенных первого подвижного воздушного объекта, второго ВО и далее до N-го ВО, а передача данных с М-го ВО на НК осуществляется в обратном порядке. Бортовая аппаратура связи через последовательно соединенные бортовой антенный коммутатор, бортовую направленную антенну через эфир подключена к наземной направленной антенне. В режимах ретрансляции и обмена данными бортовая направленная антенна 1-го ВО соединена по эфиру с бортовой направленной антенной 2-го ВО и так далее до N-го ВО.
Прототипу присущи недостатки, связанные с недоиспользованием пропускной способности широкополосной линии связи СВЧ-диапазона, так как объем информации подвижного воздушного объекта, снимаемой с его датчиков, может быть передан с гораздо меньшей скоростью. Например, подвижный воздушный объект может быть использован для картографирования поверхности Земли. Однако не всегда удается передать на наземный комплекс изображение объектов с требуемой точностью даже при использовании широкополосной линии связи из-за необходимости четкого детализирования некоторых узлов конструкции объектов.
Таким образом, основной технической задачей, на решение которой направлено заявляемое изобретение, является повышение полученной с помощью подвижного воздушного объекта точности воспроизведения земной поверхности и разрешающей способности расположенных на ней объектов при неизменной скорости передачи данных по широкополосной линии связи за счет выделения из общего района сканирования наиболее интересного в вероятностном смысле участка и передачи о нем полной информации на НК.
Указанный технический результат достигается тем, что в систему радиосвязи с подвижными объектами, состоящую из наземного комплекса, содержащего наземную антенну, радиостанцию, подключенную двухсторонними связями через аппаратуру передачи данных к соответствующему первому входу/выходу вычислителя автоматизированного рабочего места (АРМ), первый вход которого подключен к приемнику сигналов глобальных навигационных спутниковых систем, второй вход - к пульту управления АРМ, а выход - к монитору АРМ, формирователь типа ретранслируемых сообщений, соединенный с соответствующим входом вычислителя АРМ, концентратор, подключенный к локально-вычислительным сетям, которые в свою очередь подключены двухсторонними связями к соответствующим входам/выходам наземной направленной антенны, наземному антенному коммутатору, наземной аппаратуре связи, каждому из A АРМ, состоящих из вычислителя АРМ, соединенного с выходом пульта управления АРМ и с входом монитора АРМ, каждый из B блоков сопряжения состоит из последовательно соединенных второй наземной аппаратуры передачи данных и устройства сопряжения с каналом связи, вход/выход которого является входом/выходом системы, наземная направленная антенна через антенный коммутатор соединена двухсторонней связью с соответствующим входом/выходом наземной аппаратуры связи, наземный блок горизонтирования подключен к наземной направленной антенне механическими связями, N подвижных воздушных объектов (ВО), в состав каждого из которых входят бортовые датчики, бортовой приемник сигналов глобальных навигационных спутниковых систем, анализатор типа принимаемых сообщений и бортовой формирователь типа ретранслируемых сообщений, каждый из которых соединен с соответствующими входами бортового вычислителя, выход которого подключен к входу блока регистрации данных, а вход/выход - к двунаправленной шине системы управления подвижным воздушным объектом, бортовой вычислитель через последовательно соединенные бортовые аппаратуру передачи данных и радиостанцию подключен к бортовой антенне, бортовая аппаратура связи, бортовой антенный коммутатор, бортовая направленная антенна, бортовой блок горизонтирования, каждый из которых соединен двухсторонними связями с соответствующими входами/выходами бортового вычислителя, бортовой блок горизонтирования подключен к бортовой направленной антенне механическими связями, причем передача данных с НК обеспечивается по цепочке последовательно соединенных первого подвижного воздушного объекта, второго подвижного ВО и далее до N-го подвижного ВО, а передача данных с N-го подвижного ВО на НК осуществляется в обратном порядке, бортовая аппаратура связи через последовательно соединенные бортовой антенный коммутатор, бортовую направленную антенну через эфир подключена к наземной направленной антенне, в режимах ретрансляции и обмена данными бортовая направленная антенна 1-го подвижного ВО соединена по эфиру с бортовой направленной антенной 2-го подвижного ВО и так далее до N-го подвижного ВО, введены дополнительно на подвижном ВО - источник информации, соединенный двухсторонними связями через запоминающее устройство с бортовым вычислителем, а в НК - формирователь кода выбранного участка, подключенный двухсторонними связями к соответствующему входу/выходу одного из вычислителей АРМ.
На чертеже представлена система радиосвязи с подвижными объектами, где обозначено:
1 - наземный комплекс;
2 - подвижный воздушный объект;
3 - бортовой вычислитель;
4 - бортовые датчики;
5 - бортовой приемник сигналов глобальных навигационных спутниковых систем;
6 - блок регистрации данных;
7 - бортовая аппаратура передачи данных;
8 - бортовая радиостанция;
9 - бортовая антенна;
10 - наземная антенна;
11 - наземная радиостанция;
12 - наземная аппаратура передачи данных;
13 - вычислитель АРМ;
14 - наземный приемник сигналов глобальных навигационных спутниковых систем;
15 - монитор АРМ;
16 - пульт управления АРМ;
17 - анализатор типа принимаемых сообщений,
18 - двунаправленная шина системы управления подвижным воздушным объектом;
19 - бортовой формирователь типа ретранслируемых сообщений;
20 - наземный формирователь типа ретранслируемых сообщений;
21 - бортовая аппаратура связи;
22 - бортовой антенный коммутатор;
23 - бортовая направленная антенна;
24 - бортовой блок горизонтирования;
25 - наземная направленная антенна;
26 -наземный блок горизонтирования;
27 - локально-вычислительные сети;
28 - антенный коммутатор;
29 - первая наземная аппаратура связи;
30 - автоматизированное рабочее место;
31 - одна из B вторых наземных АПД блока 33 сопряжения;
32 - устройство сопряжения с каналом связи;
34 - вход/выход системы;
35 - концентратор;
36 - формирователь кода выбранного участка;
37 - источник информации;
38 - запоминающее устройство.
Двойными сплошными линиями на фигуре обозначены механические связи. Вспомогательные элементы электропитания, контроля и другие, не влияющие на выполнение цели изобретения, не включены в структурную схему системы.
Алгоритм работы системы заключается в ее адаптации к постоянно изменяющейся помеховой обстановке и взаимному положению НК 1 и ВО 2. Эта задача решена путем организации обмена данными между оборудованием подвижных воздушных объектов 2 и наземного комплекса 1 одновременно по двум радиоканалам: узкополосному MB-диапазона и широкополосному с более высокой несущей частотой (выше 1 ГГц) направленному каналу связи. По широкополосному направленному радиоканалу связи на НК 1 через устройства 38, 3, 21, 22, 23 сбрасывается информация с узла 37, например, картографическая. На НК 1 полученная информация анализируется на мониторе АРМ 15 и из общего района сканирования выделяется наиболее интересный в вероятностном смысле участок и с помощью пульта 16 управления АРМ и формирователя 36 кода выбранного участка на источник 36 информации ВО 2 передается сообщение о необходимости провести дополнительное сканирование поверхности Земли по заданным координатам для получения более полной информации на НК с меньшими дискретами по времени и с большим числом разрядов квантования видеосигналов по амплитуде, но в таких пределах, чтобы объем передаваемой на НК информации был согласован с пропускной способностью широкополосного направленного радиоканала связи.
Система радиосвязи с подвижными объектами работает следующим образом. При беспомеховой обстановке во время движения воздушные объекты, находящиеся в пределах радиогоризонта, обмениваются данными с наземным комплексом 1 в MB-диапазоне. Принимаемые наземной радиостанцией 11 из канала "воздух-земля" сообщения через аппаратуру 12 передачи данных поступают в вычислитель 13 АРМ 30, построенный, например, на базе ПЭВМ серии «Багет». В вычислителе 13 АРМ 30 в соответствии с принятым в системе протоколом обмена проводится идентификация принятого в сообщении адреса с адресами воздушных объектов, хранящимися в памяти вычислителя 13 АРМ. В некоторых случаях НК 1 может обеспечивать обмен данными только с одним ВО. При совпадении адреса воздушного объекта с хранящимся в списке адресом информация о местоположении, параметрах движения ВО 2 и состоянии его датчиков выводится на экран монитора 15 АРМ НК 1. В вычислителе 13 АРМ 30 решаются следующие задачи: приема-передачи сигналов со второй наземной АПД 31, прием данных о фактическом положении диаграммы направленности антенны (ДНА) наземной направленной антенны 25 и состоянии наземной аппаратуры 29 связи, формирование хронизирующих сигналов для переключения режимов «передача-прием» антенного коммутатора 28, управления процессами подготовки в узле 26 для передачи на ВО 2 кодов положения выбранного участка повторного сканирования поверхности и восстановления переданной с ВО 2 информации. Кроме того, в вычислителе 13 АРМ 30 формируются сигналы управления: положением ДНА наземной направленной антенны 25 по азимуту и углу места, наземным блоком 26 горизонтирования, режимами работы ВО, прием и обработка сигналов контроля со всех радиоэлектронных узлов системы, сигналов с выхода наземного приемника 14 сигналов глобальных навигационных спутниковых систем, прием-передача данных через блок 33 сопряжения по шине 34 потребителям информации, формирование на экране монитора 15 АРМ 30 картинки в соответствии с принятой с узла 37 ВО 2 информацией и выдача в формирователь 36 кода выбранного участка координат маркера (курсора), полученных с помощью пульта 16 управления АРМ, отображение на мониторе 15 АРМ цифровой карты местности и вспомогательной информации в виде графических линий, символов, квитанций и донесений о режимах работы ВО 2, НК 1, АРМ 30, слежение за местоположением всех ВО 2 в зоне радиосвязи, обеспечение постоянной радиосвязи со всеми N ВО 2, оптимальное управление их движением, решение конфликтных ситуаций и выполнение других операций.
Бортовой вычислитель 3 осуществляет: прием-передачу сигналов с НК 1, прием данных о фактическом положении ДНА бортовой направленной антенны 23 и состоянии бортовой аппаратуры 21 связи, формирование хронизирующих сигналов для переключения режимов «передача-прием» бортового антенного коммутатора 22 и дискретизации во времени и квантования по амплитуде видеосигналов в запоминающем устройстве 38, формирование сигналов управления: положением ДНА бортовой направленной антенны 23 по азимуту и углу места, бортовым блоком 24 горизонтирования, режимами работы оборудования ВО, прием и обработку сигналов контроля со всех радиоэлектронных узлов ВО с передачей результата обработки на НК 1, сигналов с выхода бортового приемника 5 сигналов глобальных навигационных спутниковых систем, прием-передачу данных по шине 18 соответствующим потребителям информации, формирование на экране блока 6 регистрации данных картинки в соответствии с принятой с НК 1 информацией и вспомогательной информацией с узлов ВО 2 в виде графических линий, символов и других изображений, отображение команд управления с НК 1 и передача через запоминающее устройство 38 кода выбранного участка для выбора режима работы узла 37 ВО 2, слежение за местоположением НК 1 и всех ВО 2 в зоне радиосвязи; обеспечение постоянной радиосвязи с заданными с НК 1 воздушными объектами 2, оптимальное управление движением собственного ВО 2, решение конфликтных ситуаций и выполнение других операций.
Эти операции выполняются программно с помощью дополнительных модулей, конструктивно встраиваемых в вычислители 3 и 13 или выполненных в виде отдельных узлов, входящих в «обрамление» указанных вычислителей. Все АРМ 30 идентичны по структуре и программному обеспечению. Пульт 16 управления АРМ, предназначенный для выполнения известных операций [1], может состоять, например, из клавиатуры и манипулятора графического. Число АРМ 30 определяется требуемой производительностью операторов (диспетчеров), числом потребителей информации и объемом потребляемой ими информации. Бортовой вычислитель 3 может состоять из нескольких процессоров, объединенных общей шиной. Все АРМ 30 соединены между собой и с другими блоками системы с помощью локально-вычислительных сетей 27. ЛВС 27 может состоять из нескольких интерфейсов со своими физическими линиями, например, МКИО, Ethernet, RS-232 и других [5, 6].
Уменьшение дополнительно просматриваемого участка по сравнению со сканируемой ранее поверхностью Земли в обычном режиме позволяет во столько же раз увеличить число разрядов аналогового цифрового преобразователя АЦП, стоящего на входе узла 38, или уменьшить величину дискреты по времени обработки видеосигналов с источника 37 информации при той же, что и ранее скорости передачи данных, что позволит повысить точность воспроизведения земной поверхности и разрешающую способность расположенных на ней объектов.
Для линии связи СВЧ-диапазона в соответствии с рекомендациями Международной комиссии по радиочастотам могут быть выбраны, например, диапазоны (1710 -1850) МГц, (7125 - 8500) МГц или другие, имеющие характерные окна радиопрозрачности атмосферы. Особенностью широкополосной радиолинии связи является то, что в наземной и бортовой аппаратуре связи 29 и 21 для повышения помехозащищенности используются кодирование передаваемых данных, комбинированные методы модуляции, способы борьбы с замираниями в условиях многолучевого распространения радиоволн, а также направленные антенны 23 и 25 с узкой ДНА, например, от 1 до 10 градусов [7].
Операции кодирования, модуляции и борьбы с замираниями радиосигнала осуществляются в бортовой и наземной аппаратуре связи 21 и 29. Аппаратура связи 21 и 29 состоит, например, из радиостанции СВЧ-диапазона и соответствующей аппаратуры обработки и передачи данных. Кодирование передаваемых данных может быть осуществлено, например, с помощью сверточного кодирования по Витерби с мягким решением и использованием модифицированной решающей обратной связи [7, 8]. Для борьбы с замираниями в условиях многолучевого распространения радиоволн может быть использован, например, широкополосный сигнал и прием разнесенных во времени сигналов по схеме «РЕЙК», в которой обеспечивается разделение и адаптивное весовое сложение сигналов в динамике профиля многолучевости [7, 8]. В радиостанции для создания радиосигнала может быть использован, например, метод непосредственной модуляции сигнала промежуточной частоты фазоманипулированной псевдослучайной последовательностью. В некоторых вариантах может быть использована псевдослучайная перестройка несущей частоты.
В качестве антенн 23 и 25 могут быть использованы, например, активные фазированные антенные решетки или параболические антенны с электромеханическим управлением положением ДНА. Сектор сканирования луча ДНА антенны 25 по азимуту - вкруговую (360 градусов), по углу места - практически от 0 до 180 градусов (без учета углов закрытия и особенностей связи при углах места вблизи 90 градусов). Управление положением ДНА выполняется, например, программно с помощью вычислителей 3, 13 и дополнительных модулей, конструктивно встраиваемых в вычислители 3 и 13 АРМ или выполненных в виде отдельных узлов, входящих в «обрамление» указанных вычислителей. Сохранение положения центра ДНА в направлении на выбранный объект системы при маневрах ВО 2 или НК 1 обеспечивается с помощью блоков горизонтирования 24 и 26, управляемых с помощью данных с вычислителей 3, 13. Наведение ДНА осуществляется путем нахождения пространственного вектора между двумя объектами системы и направления по нему центров ДНА соответствующих объектов системы. Для этого с учетом тенденции (экстраполяции) движения с привязкой к единому всемирному времени используются точные координаты ВО 2 и НК 1, вычисляемые по выходным сигналам приемников 5 и 14 глобальных навигационных спутниковых систем, например, ГЛОНАСС/GPS [9]. В упрощенном варианте системы на ВО 2 может быть установлена пассивная антенна с круговой ДНА по азимуту и с небольшой направленностью по углу места с коэффициентом усиления (3-10) дБ. В этом случае блок 24 горизонтирования и функциональные связи бортового вычислителя 3 с бортовой антенной 23 и блоком 24 горизонтирования, бортовой антенны 23 и блока 24 могут отсутствовать. Для защиты антенн 23 и 25 от внешних воздействий могут быть использованы, например, радиопрозрачные укрытия, не показанные на фигуре. Для варианта использования на НК 1 параболических антенн с электромеханическим управлением положением ДНА под радиопрозрачным укрытием размещают устройства сканирования наземной антенны 25 по азимуту и углу места, а соответствующие датчики, антенный коммутатор 28, блок 26 горизонтирования и для уменьшения потерь радиосигнала в антенно-фидерном тракте наземную аппаратуру 29 связи.
Информация блоков 12, 14, 20, 36 обрабатывается в вычислителе 13 одного из АРМ, например, первого. Полученные по ЛВС 27 данные распределяются между остальными вычислителями 13 АРМ 30 и, при необходимости, передаются через одну из B вторых наземных АПД 31 блока 33 сопряжения и устройство 32 сопряжения с каналом связи блока сопряжения 33 по шине 34 соответствующему потребителю информации. Сообщения от потребителя информации на вычислители 13 АРМ 30 и ВО 2 передаются через те же узлы, но в обратном порядке. В зависимости от объема требуемой информации для обработки и формирования сообщений потребителю могут быть использованы несколько АРМ 30. Обмен данными по ЛВС 27 организуется известными способами с помощью концентратора 35, который может быть выполнен, например, в виде оконечного устройства для интерфейса МКИО [5, 6].
При выходе за пределы радиогоризонта, хотя бы одного из ВО 2, или приближении к границе зоны устойчивой радиосвязи программно определяется один из ВО 2, который назначается ретранслятором сообщений, условно обозначенный на фигуре цифрой 21. Ретрансляция данных в противоположных направлениях осуществляется в MB-диапазоне и СВЧ-диапазоне (при необходимости). В СВЧ-диапазоне ДНА на сторонах приема и передачи должны быть направлены друг на друга. При постоянном изменении дальности между взаимодействующими ВО 2 в качестве ретранслятора может быть определен любой из N подвижных воздушных объектов, местоположение которого оптимально по отношению к НК 1 и всем остальным ВО 2. В этом случае автоматически или оператором АРМ 30 назначается ВО 21, который в течение определенного времени будет использоваться в качестве ретранслятора. По анализу местоположения и параметров движения остальных ВО 2 в вычислителе 13 АРМ определяются оптимальные пути доставки сообщений удаленному от НК 1 за радиогоризонт подвижному воздушному объекту, а для радиолинии СВЧ-диапазона - положения ДНА на приемной и передающей сторонах.
Узлы 7, 8, 9, составляющие основу бортового комплекса связи MB-диапазона, и узлы 10, 11, 12, составляющие основу наземного комплекса связи MB-диапазона, для повышения надежности связи могут быть зарезервированы. Тогда один их входов/выходов бортового вычислителя 3 должен быть подключен ко второй цепочке, состоящей из последовательно соединенных узлов 7, 8, 9, а на НК 1 один их входов/выходов наземного вычислителя 13 любого из АРМ 30 также должен быть подключен к соответствующей второй цепочке, состоящей из последовательно соединенных узлов 12, 11, 10. В этом случае в наземном вычислителе 13 одного из АРМ, определенного ведущим, осуществляются операции оценки достоверности информации, принимаемой с ВО 2 по двум MB каналам, и обработки наиболее ценной, достоверной информации.
Сообщение от НК 1 через последовательную цепочку, состоящую из (N-1) подвижных воздушных объектов 2, может быть доставлено N-му ВО 2N. Для этого на НК 1 в формирователе 20 типа ретранслируемых сообщений в заранее определенные разряды передаваемой кодограммы закладываются номер ВО 21, назначенного ретранслятором, и адреса подвижных воздушных объектов 2, обеспечивающих заданный трафик сообщения. При помеховой обстановке трафики для радиосигналов MB-диапазона и СВЧ-диапазона могут быть различные. Принятые данные обрабатываются в блоке 17 анализа типа сообщений воздушного объекта 2. Если сообщение предназначено для данного ВО 2, то после анализа решается вопрос о направлении данных на блок 6 регистрации или по двунаправленной шине 18 на систему управления ВО, не указанную на фигуре, или, при работе в режиме ретрансляции, о передаче данных на соседний ВО 2. Для исключения коллизий минимизируется число разрядов в передаваемом сообщении, а ретрансляция данных осуществляется последовательно во времени.
При обмене данными по линиям «воздух-земля», «воздух-воздух», особенно при наличии помеховой обстановки, снижения достоверности передачи данных в MB-диапазоне управление графиком СВЧ-радиосигнала осуществляется с наземного вычислителя 13 в соответствии с алгоритмом, заключающемся в том, что на передающей стороне соответствующего ВО 2 наводят диаграмму направленности антенны на диаграмму направленности антенны приемной стороны выбранного для ретрансляции ВО 2 и передают сигналы. На приемной стороне известными способами [8, 10] измеряют достоверность передачи информации. Полученную оценку передают в обратном направлении. Эти данные с привязкой к единому времени и координатам (местоположению) ВО 2 запоминаются для дальнейшего использования в процессе связи. Затем на передающей стороне оценивают уровень достоверности передачи информации, приходящей с направления приемной стороны. При низкой достоверности с помощью обработки данных о положении всех ВО 2, хранимых в наземном вычислителе 13, выбирают маршрут ретрансляции. В следующий момент времени диаграмму направленности передающей антенны и диаграмму направленности приемной антенны устанавливают друг на друга в соответствии с выбранным маршрутом.
Для последовательного выполнения этих операций в заданный момент времени определяется текущее местоположение всех ВО 2 и НК 1, вычисляются в наземном вычислителе 13 экстраполяционные точки нахождения соответствующих объектов системы во время планируемого сеанса связи, осуществляется взаимное наведение центров диаграмм направленности антенн НК 1 и первого (в порядке обслуживания) ВО 2 и слежение за ним во время движения. Затем проводят обмен данными между соответствующими объектами системы, и после получения подтверждения о приеме эту процедуру повторяют со вторым ВО 2 и так далее. При совпадении направления на выбранный для связи ВО 2 с направлением на источник помех, положение которого определено в наземном вычислителе 13 по результатам оценки достоверности принятой информации со всех ВО 2, вычисляется оптимальный маршрут передачи данных на выбранный для связи ВО 2 через другие подвижные воздушные объекты, работающие в режиме ретрансляции. В НК 1 и в выбранных для ретрансляции ВО 2 с помощью соответствующих вычислителей осуществляется взаимное наведение центров диаграмм направленности антенн и слежение за соответствующими объектами во время их движения. Для этого с наземного вычислителя 13 НК 1, имеющего больший объем информации о воздушной ситуации в своей зоне ответственности по сравнению с бортовыми вычислителями ВО 2, постоянно осуществляется обмен соответствующими сообщениями со всеми ВО 2.
После получения на НК 1 подтверждения о достоверном приеме информации на ВО 2 в вычислителе 13 АРМ 30 автоматически формируется следующее сообщение в адрес управляемого ВО 2, например, код выбранного участка для сканирования поверхности. Это сообщение, пройдя по той же рассмотренной ранее цепочке, но только в обратном порядке, поступает на соответствующий бортовой вычислитель 3, при необходимости, отображается на экране бортового блока 6 регистрации данных и поступает на соответствующий бортовой узел.
Для удобства разрешения оператором НК 1 конфликтной ситуации при наличии помеховой обстановки на экран каждого монитора 15 АРМ 30 НК 1 может выводиться положение каждого ВО 2 относительно НК 1. Для этого, программно, с помощью вычислителя 13 АРМ выделяются части пространства, в которых помеховая ситуация в вероятностном смысле менее напряженная, и через находящиеся там ВО 2 осуществляется трафик. Для отображения тенденции движения каждого ВО 2 на экране монитора 15 АРМ вычислителем 13 АРМ 30 формируются отметки, характеризующие предыдущее местоположение ВО 2 и экстраполяционные отметки, характеризующие местоположение ВО 2 через заданный интервал времени. По мере движения ВО 2 устаревающие отметки стираются. Положение трассы полета всех ВО 2 в зоне обслуживания НК 1 сохраняются в памяти вычислителя 13 АРМ на заданный период времени.
При передаче с НК 1 приоритетных сообщений для ВО 2 в соответствии с категориями срочности, принятыми в системе радиосвязи с подвижными воздушными объектами, в формирователе 20 типа ретранслируемых сообщений в заголовке сообщения формируется код запрета передачи других сообщений на время, отводимое для трансляции данных с НК 1 на выбранный ВО 2 с учетом времени реакции ВО 2 на принятое сообщение и времени задержки в трактах обработки дискретных сигналов. Принимаемая на ВО 2 информация отображается на экране бортового блока 6 регистрации данных в виде буквенно-цифровых символов или в виде точек и векторов.
Остальные менее приоритетные сообщения в соответствии с протоколом обмена находятся в очереди соответствующей категории срочности. В вычислителях 3 и 13 определяется время "старения" информации, и если сообщение в течение определенного промежутка времени не было передано в канал связи, то оно "стирается" и посылается запрос на повторную передачу сообщения.
В обычном режиме в беспомеховой обстановке с НК 1, когда не требуется ретрансляция сигналов, осуществляется адресный опрос ВО 2 путем формирования сообщения для передачи в канал радиосвязи кода выбранного участка для сканирования поверхности Земли в соответствии с протоколом обмена. Набираемое оператором (диспетчером) с любого из пультов 16 управления АРМ 30 или автоматически с помощью вычислителя 13 АРМ по положению курсора на экране монитора 15 АРМ 30 сообщение отображается на мониторе 15 АРМ и параллельно после прохождения сигнала на НК 1 через последовательно соединенные вычислитель 13 АРМ 30, аппаратуру передачи данных 12, радиостанцию 11, антенну 10 и на ВО 2 - через бортовые: антенну 9, радиостанцию 8, аппаратуру передачи данных 7 поступает в бортовой вычислитель 3, где происходит идентификация принятого в сообщении адреса с собственным адресом ВО 2. Если адреса совпадают, то сообщение передается в блок 17 анализа типа ретранслируемого сообщения для дешифрации служебной части полученного сообщения и определения режима работы аппаратуры ВО 2. Информационная часть сообщения записывается в память бортового вычислителя 3 и при необходимости выводится на экран блока 6 регистрации данных, который может быть выполнен в виде монитора или другого устройства отображения, или через запоминающее устройство 38 поступает на источник 37 информации.
В зависимости от числа подвижных воздушных объектов и числа переспросов сообщений в канале радиосвязи в системе используются динамические алгоритмы обмена сообщениями и эффективного управления полетом ВО 2. При изменении помеховой обстановки, взаимного положения НК 1 и ВО 2, нарушения режима полета подвижного воздушного объекта и фиксации предельных параметров в вычислителях 3 и 13 автоматически формируется предупреждающий сигнал о возможном «обрыве» связи, информация о котором выводится на экраны блока 6 регистрации данных и монитора 15 АРМ. Визуальная картинка может быть усилена звуковым эффектом. При использовании определенного формата заголовка сообщения с выхода бортовых формирователей 19 типа ретранслируемых сообщений может быть использован режим свободного доступа со стороны других подвижных воздушных объектов 2 или режим выделения временного интервала для организации обмена данными с наземным комплексом 1.
В результате анализа состояния и загрузки каналов радиосвязи MB- и СВЧ-диапазонов в вычислителе 13 АРМ 30 НК 1 определяется число столкновений сообщений в каналах связи, и, когда это число превышает предельно допустимое, система переходит в режим адресного опроса для упорядочения работы канала передачи данных "воздух-земля". Для того чтобы избежать столкновений в радиоканале связи при одновременной передаче несколькими объектами, вычислителями 3 и 13 может осуществляться, например, контроль несущей частоты при воздействии преамбулы или заголовка (служебной части сообщений). Подготовленное сообщение с ВО 2 передается только в том случае, когда радиоканал свободен. Для того чтобы разнести во времени моменты выхода на связь подвижных воздушных объектов в то время, когда они обнаружили, что радиоканал занят, в вычислителях 3 и 13 может формироваться, например, псевдослучайная задержка передачи сообщений от подвижных воздушных объектов 2 и НК 1 - для каждого объекта своя.
В режиме адресного опроса инициатором связи может быть только НК 1. Если воздушные объекты 2 сформировали для передачи сообщения и обнаружили, что радиоканал свободен, то они информируют остальные подвижные воздушные объекты в MB-диапазоне и в СВЧ-диапазоне о начале цикла передачи данных, в том числе о своем местоположении, и случайным образом или в выделенных им временных слотах распределяют передаваемые сообщения. На каждом из ВО 2 в вычислителе 3 оценивается уровень принимаемого сигнала несущей частоты в радиоканале и обрабатываются для выбора интервалов передачи точные по времени импульсы синхронизации с выхода приемников глобальных навигационных спутниковых систем. При совпадении расчетного интервала передачи с установленной очередностью воздушный объект 2 начинает передачу собственного пакета данных в выделенном интервале времени.
Сообщения о местоположении ВО 2 и НК 1 с выходов приемников 5 и 14 сигналов глобальных навигационных спутниковых систем, например, ГЛОНАСС/GPS, записываются в память вычислителей 3 и 13 с привязкой к глобальному времени. В вычислителях 3 и 13 эти данные используются для расчета навигационных характеристик и параметров движения каждого ВО в зоне радиосвязи НК 1, а также для ориентирования в пространстве узла 37, диаграмм направленности антенн 23 и 25 ВО 2 и НК 1 соответственно, в том числе при мобильном исполнении НК 1. В зависимости от выбранного интервала времени выдачи на НК 1 сообщений о местоположении ВО 2 в вычислителе 3 в заданное время формируется соответствующее сообщение с привязкой к глобальному времени проведения измерения координат ВО 2.
Принятые на НК 1, представляющий собой наземный пункт приема, передачи, обработки и отображения информации, навигационные сообщения от всех ВО 2 обрабатываются в вычислителе 13 АРМ и выводятся на экран монитора 15 АРМ 30. Точка, характеризующая местоположение НК 1, обычно размещается в центре экрана монитора 15 АРМ 30. ВО 2, находящиеся вблизи границы зоны устойчивой радиосвязи, выделяются от остальных, например, цветом отметки на экране монитора 15 АРМ, и для них в вычислителях 3 и 13 начинается решение задачи выбора оптимального пути трансляции управляющих сообщений от НК 1 на выбранный ВО 2 и передачи в обратном направлении сигналов изображения поверхности Земли. Для этого постоянно в вычислителе 13 одного или одновременно нескольких АРМ 30 известными методами [8, 10] оцениваются зоны устойчивой радиосвязи для НК 1 и всех ВО 2. Наличие приемников 5 и 14 сигналов глобальных навигационных спутниковых систем позволяет проводить управление ВО 2 и с мобильного НК 1. В аппаратуре передачи данных 7 и 12 осуществляются известные операции модуляции и демодуляции, кодирования и декодирования и другие [8, 10].
На момент подачи заявки разработаны алгоритмы и фрагменты программного обеспечения заявляемой системы радиосвязи. Узлы и шины 1-35 одинаковые с прототипом. Узлы 36 и 38 могут быть выполнены, например, на дополнительных модулях к ЭВМ типа «Багет-55», а узел 37 - например, на совмещенной строчной камере инфракрасного и видимого диапазонов высокого разрешения или на другом источнике информации.
Использование заявляемой системы радиосвязи с подвижными объектами позволяет:
- осуществлять управление картографированием поверхности Земли в помеховой обстановке за счет одновременного обмена данными по радиоканалам MB- и СВЧ-диапазонов;
- повысить помехозащищенность передачи данных в условиях многолучевого распространения радиоволн и связанных с ним частотно-селективных замираний;
- обеспечить повышение точности воспроизведения земной поверхности и разрешающей способности расположенных на ней объектов при неизменной скорости передачи данных по широкополосной линии связи;
- повысить уровень безопасности полетов за счет предоставления пилоту ВО и оператору НК информации о воздушном объекте и о ситуации вокруг него с точностью глобальной навигационной спутниковой системы (для GPS - 7 м, в режиме передачи дифференциальных поправок - 1 м [9]).
Система может быть использована для обмена данными между подвижными объектами и управления движением любого ВО, в том числе дистанционно управляемого беспилотного летательного аппарата.
Литература
1. В.В.Бочкарев, Г.А.Крыжановский, Н.Н.Сухих. Автоматизированное управление движением авиационного транспорта. М.: - Транспорт, 1999, 319 с.
2. AC № 1401626 М. кл. H04B 7/26, H04L 27/00, БИ № 21, 1988.
3. Патент РФ № 44907.
4. Патент РФ № 2309543 (прототип).
5. К.Э.Эрглис. Интерфейсы открытых систем. - М.: Горячая линия - Телеком,2000, 256 с.
6. А.А.Мячев. Интерфейсы средств вычислительной техники. Энциклопедический справочник. - М.: Радио и связь, 1993, С.350.
7. В.В.Бортников, С.С.Ананченков. Помехоустойчивость двоичных сигналов в марковском канале с замираниями. - Изв. вузов MB и ССО СССР, Радиотехника, 1984, т.24, № 10, С.78-80.
8. К.Ли. Уильям Техника подвижных систем связи. - М., Радио и связь, 1985, 391 с.
9. GPS - глобальная система позиционирования. - М.: ПРИН, 1994, 76 с.
10. Радиосистемы передачи информации: Учеб. пособие для ВУЗов / И.М.Тепляков и др. Под ред. И.М.Теплякова. - М.: Радио и связь, 1982.
Класс H04B7/26 из которых по меньшей мере одна передвижная