лазерный дальномер
Классы МПК: | G01C3/08 с использованием детекторов излучения G01S17/08 для измерения только дальности |
Автор(ы): | Вильнер Валерий Григорьевич (RU), Волобуев Владимир Георгиевич (RU), Моисеев Дмитрий Иванович (RU), Рябокуль Сергей Борисович (RU) |
Патентообладатель(и): | Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (RU) |
Приоритеты: |
подача заявки:
2012-08-16 публикация патента:
10.06.2014 |
Изобретение относится к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости объектива излучателя. Объектив состоит из цилиндрического первого оптического компонента с фокусным расстоянием f1 , образующая которого перпендикулярна минимальному габариту В тела свечения, и второго оптического компонента. Второй компонент симметричен относительно оси объектива и имеет фокусное расстояние f2 А/ , где - угловой размер удаленного объекта, соответствующий по ориентации максимальному габариту А тела свечения. Параметры оптических компонентов удовлетворяют условиям ; , где f - фокусное расстояние системы; - угловой размер удаленного объекта, соответствующий габариту B, 2=1/f2; =1/f; l1=f2-l; l - расстояние между компонентами; - угол расходимости в плоскости габарита А; - угол расходимости габарита В. Причем второй оптический компонент имеет возможность регулировки расстояния l2 =f2+ f2 для изменения углов расходимости выходного излучения. Технический результат заключается в упрощении изготовления устройства при сохранении габаритов и КПД. 5 ил.
Формула изобретения
Лазерный дальномер, содержащий приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости объектива излучателя, а объектив излучателя состоит из цилиндрического первого оптического компонента с фокусным расстоянием f1, образующая цилиндра которого перпендикулярна минимальному габариту В тела свечения, и второго оптического компонента, отличающийся тем, что второй оптический компонент оптически симметричен относительно оптической оси объектива излучателя и имеет фокусное расстояние f2 А/ , где - угловой размер удаленного объекта, соответствующий по ориентации максимальному габариту А тела свечения, а параметры оптических компонентов удовлетворяют условиям
; ,
где f - фокусное расстояние системы из первого и второго компонентов в плоскости, перпендикулярной к образующей цилиндра первого компонента;
2=1/f2; =1/f; l1=f2-l;
l - расстояние между оптическими компонентами;
- угловой размер удаленного объекта, соответствующий по ориентации габариту B тела свечения излучателя;
- угол расходимости излучения лазерного излучателя в плоскости его габарита А;
- угол расходимости излучения лазерного излучателя в плоскости его габарита В,
причем величина l1 не превышает значения, при котором астигматизм системы As удовлетворяет требованиям допуска, а второй оптический компонент имеет возможность регулировки расстояния l2=f2+ f2 для изменения углов расходимости выходного излучения системы.
Описание изобретения к патенту
Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.
Известен лазерный дальномер [1], содержащий приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого расположено в фокальной плоскости объектива излучателя.
Недостаток такой конструкции - невозможность обеспечить в малых габаритах малую выходную расходимость выходного излучения и одновременно апертурный угол объектива, достаточный для сбора всего светового пучка с выхода излучателя.
Наиболее близким по технической сущности к предлагаемому устройству является лазерный дальномер, описанный в [2]. Указанный лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого расположено в фокальной плоскости объектива излучателя, а объектив излучателя состоит из первого цилиндрического компонента с фокусным расстоянием f1, образующая цилиндра которого перпендикулярна минимальному габариту В тела свечения лазерного излучателя и параллельна его максимальному габариту А, и второго цилиндрического компонента с фокусным расстоянием f2, с образующей цилиндра, перпендикулярной максимальному габариту А тела свечения, которые удалены от эквивалентного тела свечения излучателя на расстояния l1 для первого цилиндрического компонента и l2 для второго цилиндрического компонента, причем l1=f1>В/ для первого цилиндрического компонента и l2 =f2>A/ для второго цилиндрического компонента, где и - угловые размеры удаленного объекта, соответствующие по ориентации габаритам А и В эквивалентного тела свечения излучателя.
Недостаток такого технического решения - относительно высокая трудоемкость изготовления цилиндрических компонентов, особенно если их оптические поверхности имеют полиномиальную образующую, в чем возникает необходимость при больших апертурных углах и высоких требованиях к расходимости выходного изучения дальномера.
Задачей изобретения является снижение трудоемкости изготовления оптической системы излучателя лазерного дальномера при сохранении ее малых габаритов, малой расходимости выходного излучения и максимальных апертурных углов оптической системы, обеспечивающих полный сбор энергии излучения с выхода лазерного излучателя.
Указанная задача решается за счет того, что в известном лазерном дальномере, содержащем приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого с габаритами АхВ расположено в фокальной плоскости объектива излучателя, а объектив излучателя состоит из первого оптического компонента - цилиндрической линзы с фокусным расстоянием f 1 и образующей цилиндра перпендикулярной минимальному габариту В тела свечения лазерного излучателя и параллельной его максимальному габариту А, и второго оптического компонента, второй оптический компонент оптически симметричен относительно оптической оси объектива излучателя и имеет фокусное расстояние f2 А/ , где - угловой размер удаленного объекта, соответствующий по ориентации максимальному габариту А тела свечения, а параметры оптических компонентов удовлетворяют условиям
;
где f - фокусное расстояние системы из первого и второго компонентов в плоскости, перпендикулярной к образующей цилиндра первого компонента;
2=1/f2; =1/f; l1=f2-l;
l - расстояние между оптическими компонентами;
- угол расходимости излучения лазерного излучателя в плоскости его габарита А;
- угол расходимости излучения лазерного излучателя в плоскости его габарита В,
причем величина l 1 не превышает значения, при котором астигматизм системы As удовлетворяет требованиям допуска, а второй оптический компонент имеет возможность регулировки расстояния l2=f 2+ f2 для изменения углов расходимости выходного излучения системы.
На фиг.1 представлена блок-схема лазерного дальномера. Фиг.2а и 2б служат для пояснения вида эффективного тела свечения и апертурного угла ( ) соответственно у твердотельного лазерного излучателя с линзой и полупроводникового лазера. Фиг.2в иллюстрирует связь между габаритами В и А тела свечения с фокусными расстояниями f и f2 и углами и расходимости выходного излучения. На фиг.3а показано взаимное положение эквивалентного тела свечения и компонентов объектива излучателя. На фиг.3б изображены вид и габариты двухполоскового тела свечения полупроводникового лазера с двумя излучающими переходами. На фиг.4 представлены сечения передающего устройства вдоль оси излучения в двух перпендикулярных плоскостях. На фиг 5 показаны зависимости фокусного расстояния f1 и астигматизма As от расстояния между оптическими компонентами l.
Лазерный дальномер (фиг.1) содержит передающее устройство, состоящее из лазерного излучателя 1, сопряженного с объективом 2 излучателя, и приемное устройство, состоящее из приемника 3, сопряженного с объективом 4 приемника. Лазерный дальномер сориентирован так, чтобы оси приемного и передающего устройств были направлены в сторону удаленного объекта. Если лазер 5 формирует квазипараллельный пучок излучения, то введением в состав лазерного излучателя линзы 6 можно создать эквивалентное тело свечения 7, расположенное на конечном расстоянии от объектива излучателя (фиг.2а). Тело свечения 7 полупроводникового лазера 5 совпадает с его выходной гранью (фиг.2б). Перед телом свечения размещен первый оптический компонент 8, представляющий собой цилиндрическую линзу (фиг.2в, 4а). Второй оптический компонент 9, представляющий собой сферическую линзу, удален от тела свечения 7 на расстояние l2, примерно равное его фокусному расстоянию f2 (фиг.4б).
Устройство работает следующим образом.
При срабатывании лазерного излучателя 1 на его выходе образуется тело свечения 7, испускающее расходящийся пучок лазерного излучения. Первый цилиндрический компонент 8, не влияя на расходимость пучка лазерного излучения в горизонтальной плоскости, перехватывает этот пучок излучения в вертикальной плоскости в апертурном угле и направляет его в сторону оптического компонента 9, совместно с ним формируя выходной пучок с угловой расходимостью в вертикальной плоскости =B/f, где В - вертикальный габарит тела свечения 7, a f - эквивалентное фокусное расстояние системы из первого и второго оптических элементов (Н - главная плоскость этой системы). Второй оптический компонент 9 работает также в горизонтальном апертурном угле и формирует в горизонтальной плоскости выходной пучок с угловой расходимостью =A/f2, где А - горизонтальный габарит тела свечения 7.
В описанной конфигурации первый и второй оптические компоненты объектива в общем случае создают астигматизм. Предлагаемые ограничения на соотношение параметров элементов объектива позволяют уменьшить его до приемлемого уровня, обеспечивая при этом выполнение решаемой задачи.
Основная функция объектива излучателя - сформировать выходной пучок зондирующего излучения с угловой расходимостью х . Это требование выполняется при соблюдении условий, которые следуют из расчетных соотношений для двухлинзовой системы фиг.4а [3, стр.35-36] и требований к ее астигматизму As и углам и расходимости выходного излучения.
где
f - фокусное расстояние системы из первого и второго компонентов в плоскости, перпендикулярной к образующей цилиндра первого компонента;
2=1/f2; =1/f; l1=f2-l;
l - расстояние между оптическими компонентами;
As - астигматизм объектива излучателя;
f - удлинение фокального отрезка объектива за счет толщины первого компонента в плоскости, параллельной образующей цилиндра;
Н - удлинение фокального отрезка объектива за счет расстояния между главными плоскостями первого компонента в плоскости, перпендикулярной образующей цилиндра.
Вторая важнейшая функция объектива излучателя - собрать излучаемый телом свечения лазера пучок в апертурных углах, соответствующих углам расходимости излучения. Этому требованию отвечает условие, получаемое из рассмотрения хода лучей в оптической системе фиг.4 [3, стр.21-22, 35-36].
где
- угол расходимости излучения лазера в плоскости его габарита А;
- угол расходимости излучения лазера в плоскости его габарита В.
Отраженное удаленным объектом излучение с помощью объектива 4 приемника 3 фокусируется на чувствительную площадку приемника. Дальность до объекта R=ct/2,
где t - задержка принятого сигнала, с - скорость света.
Пример
Исходные данные. В=0,01 мм; А=0,1 мм; = =10-3 рад; =10°; =20°.
Из условий (1) и (4) следует f2=100 мм. l2~f2=100 мм. f=10 мм.
По конструктивным условиям принято l=99,5 мм.
Тогда по формуле (2) определяется величина фокусного расстояния цилиндрического компонента.
Такое расстояние может быть получено, например, при использовании в качестве первого оптического компонента отрезка стекловолокна с круглым сечением.
Фокусное расстояние подобного элемента определяется формулой [3, стр.37]
где n - показатель преломления материала стекловолокна;
r - радиус стекловолокна.
Для стекловолокна из оптического стекла К8 с показателем преломления n=1,516 [4] фокусному расстоянию f1=0,05 мм соответствует волокно диаметром 2r=0,14 мм.
При этом согласно (3) астигматизм As~0,4 мм.
При сборке дальномера углы расходимости излучения и можно оптимизировать продольной подвижкой второго оптического компонента с введением поправки f2<<f2.
Предлагаемое изобретение позволяет существенно упростить изготовление оптических элементов лазерного дальномера за счет применения типовых оптических деталей, тем самым обеспечивая поставленную задачу - снижение трудоемкости изготовления оптической системы излучателя лазерного дальномера при сохранении ее малых габаритов, малой расходимости выходного излучения и максимальных апертурных углов оптической системы, обеспечивающих полный сбор энергии излучения с выхода лазерного излучателя.
Источники информации
1. Патент США № 6903811.
2. Патент РФ № 2341771 - прототип.
3. И.Л.Сакин. Инженерная оптика. Изд. «Машиностроение», Л., 1976 г.
4. М.Я.Кругер и др. Справочник конструктора оптико-механических приборов. Изд. «Машиностроение», Л., 1968 г.
Класс G01C3/08 с использованием детекторов излучения
Класс G01S17/08 для измерения только дальности