способ имитации внешних тепловых потоков для наземной отработки теплового режима космического аппарата
Классы МПК: | B64G7/00 Имитация космических условий, например для установления условий жизнеобеспечения |
Автор(ы): | Антонов Борис Игоревич (RU), Зяблов Валерий Аркадьевич (RU), Платонов Виктор Викторович (RU), Щербаков Эдуард Викторович (RU) |
Патентообладатель(и): | Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU) |
Приоритеты: |
подача заявки:
2012-09-26 публикация патента:
10.06.2014 |
Изобретение относится к тепловакуумным испытаниям космического аппарата (КА), а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий. Согласно изобретению до помещения КА в термовакуумную камеру захолаживают криоэкраны этой камеры и имитируют внешние тепловые потоки, действующие в полете на КА. При этом подают поочередно напряжение на каждый нагревательный элемент имитатора данных потоков, постоянно измеряя потребляемую на элементе мощность. Фиксируют скачкообразное увеличение потребляемой мощности по отношению к мощности в стационарном режиме нагрева. Отбраковывают нагревательные элементы, для которых характерны такие скачки мощности, после чего отогревают криоэкраны, разгерметизируют вакуумную камеру и заменяют отбракованные нагревательные элементы. Повторяют операции отбраковки и замены нагревательных элементов до достижения всеми элементами стационарного режима нагрева. После этого устанавливают КА в термовакуумную камеру и проводят соответствующие испытания. Техническим результатом изобретения является повышение точности имитации тепловых потоков на КА с целью обеспечения надежности и долговечности КА при эксплуатации. 1 ил.
Формула изобретения
Способ имитации внешних тепловых потоков для наземной отработки теплового режима космического аппарата, заключающийся в том, что помещают космический аппарат в термовакуумную камеру с криоэкранами, вакуумируют камеру, захолаживают криоэкраны для имитации холода окружающего космического пространства и подвергают космический аппарат воздействию тепловых потоков от имитатора внешних тепловых потоков термовакуумной камеры, отличающийся тем, что до помещения космического аппарата в термовакуумную камеру воспроизводят тепловые потоки имитатором внешних тепловых потоков, подавая поочередно напряжение на каждый нагревательный элемент имитатора внешних тепловых потоков и постоянно измеряя потребляемую мощность на нагревательных элементах, фиксируют скачкообразное увеличение потребляемой мощности на нагревательных элементах по отношению к мощности этих нагревательных элементов в стационарном режиме нагрева, отбраковывают нагревательные элементы, для которых характерны вышеуказанные скачки мощности, отогревают криоэкраны, разгерметизируют термовакуумную камеру, заменяют отбракованные нагревательные элементы, повторяют операции отбраковки и замены нагревательных элементов до достижения всеми нагревательными элементами стационарного режима нагрева, после чего устанавливают космический аппарат в термовакуумную камеру и воздействуют на космический аппарат тепловыми потоками от имитатора внешних тепловых потоков, моделируя вакуум и температурные режимы полета.
Описание изобретения к патенту
Изобретение относится к области испытательной техники, в частности к тепловакуумным испытаниям космического аппарата (КА) в условиях, приближенных к эксплуатации КА в открытом космическом пространстве, а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий, изготовленных из различных материалов или имеющих разные покрытия.
Известен способ имитации внешних тепловых потоков для наземной отработки теплового режима КА, заключающийся в помещении КА в термовакуумную камеру с криоэкранами, вакуумировании камеры, захолаживании криоэкранов и воздействии на КА тепловых потоков с помощью нагревателей («Тепловые испытания космических аппаратов», Москва, «Машиностроение», 1982 г., стр.105).
Известен способ имитации внешних тепловых потоков для наземной отработки теплового режима КА, заключающийся в том, что помещают аппарат-имитатор в термовакуумную камеру, содержащую криоэкраны, устанавливают датчики теплового потока и эталонные датчики теплового потока на аппарат-имитатор, вакуумируют камеру и захолаживают криоэкраны, воздействуют на аппарат-имитатор тепловыми потоками, имитируя температурные режимы полета, сравнивают показания датчиков теплового потока с эталонными датчиками, извлекают аппарат-имитатор из камеры и на его место помещают штатный аппарат, после чего осуществляют воздействие на него тепловыми потоками, такими же, как и на аппарат-имитатор, при указанных выше значениях вакуума и температуры (RU 2302984, МПК B64G 7/00).
Недостаток аналогов заключается в недостаточной точности воспроизведения штатных характеристик облучения КА нагревательными элементами.
Наиболее близким по технической сущности к предлагаемому способу является способ имитации внешних тепловых потоков для наземной отработки теплового режима КА, заключающийся в том, что помещают КА в термовакуумную камеру с криоэкранами, вакуумируют камеру, захолаживают криоэкраны для имитации холода окружающего космического пространства и подвергают КА воздействию тепловых потоков от имитатора внешних тепловых потоков термовакуумной камеры («Моделирование тепловых режимов космического аппарата и окружающей его среды», под ред. академика Г.И. Петрова, «Машиностроение», 1971 г., стр.270).
Данный способ имитации внешних тепловых потоков для наземной отработки теплового режима космических аппаратов принят за прототип.
Недостаток прототипа заключается в недостаточной достоверности воспроизведения штатных характеристик облучения КА, обусловленной нестабильной работой отдельных нагревательных элементов имитатора тепловых потоков, которые в любой момент времени могут изменять свое внутреннее электрическое сопротивление, что в итоге ухудшает качество и точность воспроизведения имитатором ожидаемых штатных тепловых потоков. Практика показала, что при испытаниях по крайней мере один из нагревателей отличается нестабильной работой.
Задачей изобретения является повышение достоверности имитации внешних тепловых потоков при функционировании космического аппарата в полете, а следовательно, увеличение точности тепловакуумных испытаний за счет отбраковки и замены этих нагревательных элементов имитатора внешних тепловых потоков.
Техническим результатом изобретения является повышение качества испытаний за счет повышения точности воспроизведения тепловых потоков действующих на КА в условиях космического полета, повышение надежности и долговечности КА при эксплуатации.
Эта задача решается за счет того, что в предлагаемом способе имитации внешних тепловых потоков для наземной отработки теплового режима КА помещают КА в термовакуумную камеру с криоэкранами, вакуумируют камеру, захолаживают криоэкраны для имитации холода окружающего космического пространства и подвергают КА воздействию тепловых потоков от имитатора внешних тепловых потоков термовакуумной камеры, при этом до помещения КА в термовакуумную камеру воспроизводят тепловые потоки имитатором внешних тепловых потоков, подавая поочередно напряжение на каждый нагревательный элемент имитатора внешних тепловых потоков и постоянно измеряя потребляемую мощность на нагревательных элементах, фиксируют скачкообразное увеличение потребляемой мощности на нагревательных элементах по отношению к мощности этих нагревательных элементов в стационарном режиме нагрева, отбраковывают нагревательные элементы, для которых характерны вышеуказанные скачки мощности, отогревают криоэкраны, разгерметизируют термовакуумную камеру, заменяют отбракованные нагревательные элементы, повторяют операции отбраковки и замены нагревательных элементов до достижения всеми нагревательными элементами стационарного режима нагрева, после чего устанавливают КА в термовакуумную камеру и воздействуют на КА тепловыми потоками от имитатора внешних тепловых потоков, моделируя вакуум и температурные режимы полета.
По сравнению с прототипом увеличивается достоверность имитации внешних тепловых потоков за счет отбраковки и замены отбракованных нагревательных элементов.
На фиг.1 представлен график, полученный при проведении реальных тепловакуумных испытаний одного из космических аппаратов.
На графике видно резкое изменение выделяемой мощности преобразователем напряжения от стационарного значения 1216 Вт до 1243 Вт в результате нештатного изменения электрического параметра (сопротивления нагревателя) одного из нагревателей имитатора внешних тепловых потоков.
Предлагаемый способ имитации внешних тепловых потоков для наземной отработки теплового режима космических аппаратов осуществляется следующим образом:
- до помещения КА в термовакуумную камеру ее вакуумируют, захолаживают криоэкраны для имитации холода окружающего космического пространства, воспроизводят тепловые потоки имитатором внешних тепловых потоков, состоящим, например, из инфракрасных нагревательных элементов, подавая поочередно напряжение на каждый нагревательный элемент имитатора внешних тепловых потоков и постоянно измеряя потребляемую мощность на нагревательных элементах;
- фиксируют скачкообразное увеличение потребляемой мощности на нагревательных элементах по отношению к мощности этих нагревательных элементов в стационарном режиме нагрева, то есть мощности, заданной в программе испытаний;
- отбраковывают нагревательные элементы, для которых характерны вышеуказанные скачки мощности;
- отогревают криоэкраны, разгерметизируют термовакуумную камеру, заменяют отбракованные нагревательные элементы;
- повторяют операции отбраковки и замены нагревательных элементов до достижения всеми нагревательными элементами стационарного режима нагрева, заданного в программе испытаний;
- после чего устанавливают КА в термовакуумную камеру и воздействуют на КА тепловыми потоками от имитатора внешних тепловых потоков, моделируя при этом вакуум и температурные режимы полета.
Предлагаемое техническое решение позволяет повысить достоверность тепловакуумных испытаний за счет отбраковки и замены нагревательных элементов имитатора внешних тепловых потоков и с большей точностью воспроизводить значения температур облучаемых поверхностей на КА.
Способ достаточно прост в реализации и не требует дополнительных средств на доработку существующего испытательного оборудования, а также может иметь широкое практическое применение для получения экспериментальных данных при решении проблем, связанных с обеспечением теплового режима КА, находящихся в открытом космическом пространстве.
Класс B64G7/00 Имитация космических условий, например для установления условий жизнеобеспечения