способ подготовки топливного газа
Классы МПК: | C10K3/00 Модификация химического состава горючих газов, содержащих оксид углерода, с целью получения топлива улучшенного качества, например топлива с повышенной теплотворностью, которое может не содержать оксида углерода C10K3/06 смешиванием с газами C10L3/00 Газообразное топливо; природный газ; синтетический природный газ, полученный способами, не отнесенными к подклассам C 10G, C 10K; сжиженный нефтяной газ |
Патентообладатель(и): | Курочкин Андрей Владиславович (RU) |
Приоритеты: |
подача заявки:
2012-09-10 публикация патента:
20.06.2014 |
Изобретение относится к способу подготовки топливного газа, включающему компримирование с помощью жидкостно-кольцевого компрессора, сепарацию компрессата с получением газа и жидкости, мембранное разделение газа сепарации на отбензиненный газ и рециркулируемый низконапорный жирный газ, при этом перед компримированием сырьевой газ подвергают нагреву, каталитической дегидроциклодимеризации и охлаждению, в качестве рабочей жидкости используют подготовленную нефть, а при мембранном разделении газа сепарации дополнительно выделяют газ, обогащенный водородом, который затем смешивают воздухом и подвергают каталитическому окислению с получением газа окисления, используемого в качестве теплоносителя для поддержания температуры каталитической дегидроциклодимеризации. Технический результат изобретения заключается в увеличении метанового индекса и снижении низшей теплотворной способности подготовленного газа для его использования на газопоршневых электростанциях (ГПЭС). 2 з.п. ф-лы,1 пр.,1 ил.
Формула изобретения
1. Способ подготовки топливного газа, включающий компримирование сырьевого газа с помощью жидкостно-кольцевого компрессора, сепарацию компрессата с получением газа и жидкости, мембранное разделение газа сепарации на отбензиненный газ и рециркулируемый низконапорный жирный газ, отличающийся тем, что перед компримированием сырьевой газ подвергают нагреву, каталитической дегидроциклодимеризации и охлаждению, в качестве рабочей жидкости используют подготовленную нефть, а при мембранном разделении газа сепарации дополнительно выделяют газ, обогащенный водородом, который затем смешивают с воздухом и подвергают каталитическому окислению с получением газа окисления, используемого в качестве теплоносителя для поддержания температуры каталитической дегидроциклодимеризации.
2. Способ по п.1, отличающийся тем, что отбензиненный газ смешивают с азотсодержащим газом.
3. Способ по п.1, отличающийся тем, что в качестве рабочей жидкости жидкостно-кольцевого компрессора используют любую другую неагрессивную и химически инертную жидкость, предпочтительно углеводородсодержащую, при этом жидкость сепарации разделяют с получением смеси тяжелых компонентов катализата, которую затем смешивают с нефтью или выводят в качестве продукта, и рабочей жидкости, которую рециркулируют.
Описание изобретения к патенту
Заменяющие листы описания:
Однако способ позволяет повысить метановый индекс лишь в незначительной степени (с 22 до 40 согласно примеру, при обычном уровне требований к метановому индексу не менее 48-52) и не обеспечивает требуемой низшей теплотворной способности газа (58 МДж/нм3 согласно примеру при обычном уровне требований к низшей теплотворной способности не более 30-36 МДж/нм3) и поэтому также неприменим для получения топливного газа из углеводородных газов с высоким содержанием углеводородов C3.
Задача изобретения - повышение метанового индекса и снижение теплотворной способности газа до требований, предъявляемых к топливному газу для газопоршневых электростанций, а также повышение выхода нефти при подготовке попутного нефтяного газа.
Технический результат:
- повышение метанового индекса попутного нефтяного газа и снижение низшей теплотворной способности подготовленного газа за счет удаления углеводородов C3+ путем их каталитического превращения в углеводороды C1 и C2, водород и углеводороды С6+ с последующим удалением из газа углеводородов C6+ абсорбцией рабочей жидкостью при сжатии в жидкостно-кольцевом компрессоре и удалением водорода мембранным методом,
- повышение выхода нефти при подготовке попутного нефтяного газа за счет использования подготовленной нефти в качестве рабочей жидкости в жидкостно-кольцевом компрессоре, которая абсорбирует тяжелые углеводороды, полученные при каталитической дегидроциклодимеризации сырьевого газа.
Указанный технический результат достигается тем, что в способе подготовки топливного газа, включающем компримирование сырьевого газа с помощью жидкостно-кольцевого компрессора, сепарацию компрессата с получением газа и жидкости, мембранное разделение газа сепарации на отбензиненный газ и рециркулируемый низконапорный жирный газ, особенность заключается в том, что
перед компримированием сырьевой газ подвергают нагреву, каталитической дегидроциклодимеризации и охлаждению,
в качестве рабочей жидкости используют подготовленную нефть,
а при мембранном разделении газа сепарации дополнительно выделяют газ, обогащенный водородом, который затем смешивают с воздухом и подвергают каталитическому окислению с получением газа окисления. При необходимости дополнительного уменьшения низшей теплотворной способности при сохранении метанового индекса целесообразно отбензиненный газ смешивать с азотсодержащим газом.
В качестве рабочей жидкости жидкостно-кольцевого компрессора может быть использована любая другая неагрессивная и химически инертная жидкость, предпочтительно углеводородсодержащая, при этом жидкость сепарации разделяют с получением смеси тяжелых компонентов катализата, которую затем смешивают с нефтью или выводят в качестве продукта, и рабочей жидкости, которую рециркулируют.
Каталитическая дегидроциклодимеризация газа, которую осуществляют известным способом при повышенной температуре, в присутствии твердого цеолитсодержащего катализатора, в изотермическом реакторе, обогреваемом газом окисления смеси газа, обогащенного водородом с воздухом, позволяет превратить углеводороды C 3+ преимущественно в тяжелые углеводороды C6+ , которые далее поглощают рабочей жидкостью (абсорбентом) при компримировании в жидкостно-кольцевом компрессоре, а также газ, обогащенный водородом, удаляемый далее путем мембранного разделения, и используемый в качестве топлива. При этом достигается улучшение качества газа до нормативных требований вследствие понижения плотности подготовленного газа, уменьшения его низшей теплотворной способности и повышения метанового индекса за счет повышения концентрации метана и этана.
При использовании подготовленной нефти в качестве рабочей жидкости в жидкостно-кольцевом компрессоре углеводороды C6+, полученные при дегидроциклодимеризации газа и абсорбированные ей, увеличивают выход нефти. Поэтому подготовка попутного нефтяного газа по предлагаемому способу позволяет в промысловых условиях не только получить топливный газ для ГПЭС, но и увеличить выход подготовленной нефти, для чего отсепарированную жидкость (абсорбат) возвращают на стадию стабилизации нефти.
Газ, полученный после компримирования и сепарации, имеет повышенный метановый индекс и уменьшенную низшую теплотворную способность, однако содержит водород и остаточное количество углеводородов C3+, далее удаляемые при мембранном разделении.
Дополнительное выделение газа, обогащенного водородом, при мембранном разделении позволяет получить отбензиненный газ, соответствующий требованиям к топливному газу для ГПЭС по содержанию водорода, и газ, обогащенный водородом, используемый далее в качестве топлива для поддержания температуры дегидроциклодимеризации.
Каталитическое окисление смеси газа, обогащенного водородом, с воздухом с получением газа окисления, который используют в качестве теплоносителя для поддержания температуры каталитической дегидроциклодимеризации, позволяет обеспечить высокую промышленную безопасность способа (отсутствие огневого нагрева) и минимальное количество выбросов вредных веществ, в частности окислов азота и окиси углерода, в атмосферу.
Добавление азотсодержащего газа (например, воздуха или азотно-кислородной смеси, обогащенной азотом) к отбензиненному газу позволяет получить требуемую низшую теплотворную способность топливного газа при сохранении высокого метанового индекса.
Способ осуществляют следующим образом.
Сырьевой газ (I) смешивают с низконапорным жирным газом (II), нагревают теплом продуктов каталитической дегидроциклодимеризации в рекуперационном теплообменнике 1 и подвергают каталитической дегидроциклодимеризации в реакторе 2, обогреваемом газом окисления (III). Катализат (IV), содержащий преимущественно водород, неконденсируемые газы и тяжелые углеводороды C6+, охлаждают сырьевым газом в рекуперационном теплообменнике 1 и компримируют в жидкостно-кольцевом компрессоре 3, используя в качестве рабочей жидкости подготовленную нефть (V), которая абсорбирует тяжелые углеводороды. В сепараторе 4 полученную газо-жидкостную смесь разделяют на нестабильную нефть (VI), возвращаемую на подготовку, и газ (VII), который подают на мембранную установку 5, где выделяют низконапорный жирный газ (II), который рециркулируют в поток сырьевого газа (I), газ, обогащенный водородом (VIII), и отбензиненный газ (IX), который используют в качестве топливного газа для ГПЭС, при необходимости - после смешения с азотсодержащим газом (IX), показано пунктиром. Газ, обогащенный водородом (VIII), окисляют (осуществляют беспламенное сжигание) в смеси с воздухом (XI) в каталитическом нагревателе 6. Газ окисления (III) используют в качестве теплоносителя для компенсации поглощения тепла при дегидроциклодимеризации и поддержания температуры реакции в каталитическом реакторе 2.
Сущность изобретения иллюстрируется следующим примером.
Пример 1. Попутный нефтяной газ состава, % об.: метан 54,46, этан 16,93, пропан 16,22, н-бутан 6,22, изобутан 1,81, пентан и выше 2,94, азот 0,23, углекислый газ 1,17 с влажностью, соответствующей точке росы 25°C, смешивают с низконапорным жирным газом и подвергают дегидроциклодимеризации в каталитическом реакторе с цеолитсодержащим катализатором при 550°C, продукты реакции охлаждают, компримируют жидкостно-кольцевым компрессором с использованием минерального масла в качестве рабочей жидкости. После мембранной очистки компримированный газ имеет состав, % об.: метан 72,41, этан 21,16, пропан 1,41, н-бутан + изобутан 0,25, пентан и выше 0,03, азот 0,28, углекислый газ 1,42, водород 2,88, метановый индекс 66,6 и низшую объемную теплотворную способность 41,64 кДж/м3. После добавления 15% об. азота получен газ с метановым индексом 70,4 и низшей объемной теплотворной способность 36,0 кДж/м3, который полностью соответствует требованиям, предъявляемым к топливному газу ГПЭС (метановый индекс не менее 52, низшая теплотворная способность 30-36 кДж/м, содержание водорода не более 3% об.).
Привес массы рабочей жидкости за счет поглощения тяжелых углеводородов C6+ из продуктов каталитической дегидроциклодимеризации составил 0,42 кг/м3 сырьевого попутного нефтяного газа.
Из примера видно, что предлагаемый способ позволяет получать топливный газ для ГПЭС, соответствующий нормативным требованиям по низшей теплотворной способности и метановому индексу, а также получать дополнительное количество нефти.
Предлагаемый способ может найти применение в нефтегазовой промышленности и энергетике.
Класс C10K3/00 Модификация химического состава горючих газов, содержащих оксид углерода, с целью получения топлива улучшенного качества, например топлива с повышенной теплотворностью, которое может не содержать оксида углерода
Класс C10K3/06 смешиванием с газами
Класс C10L3/00 Газообразное топливо; природный газ; синтетический природный газ, полученный способами, не отнесенными к подклассам C 10G, C 10K; сжиженный нефтяной газ