способ испытаний автоматизированных систем сбора, обработки и анализа информации на основе выявления и принудительной инициации областей ошибок и джокеров

Классы МПК:G06N7/06 моделирование на компьютерах общего назначения
Автор(ы):,
Патентообладатель(и):Иванов Кирилл Сергеевич (RU),
Зотов Роман Валерьевич (RU)
Приоритеты:
подача заявки:
2012-11-21
публикация патента:

Изобретение относится к автоматизированным системам сбора, обработки и анализа информации, а также системам искусственного интеллекта и может быть использовано при разработке, испытаниях, исследовании и совершенствовании автоматизированных систем сбора, обработки и анализа информации, в том числе специальных программных комплексов системы информационно-телеметрического обеспечения образцов ракетно-космической техники. Техническим результатом является выявление системных и синтаксических ошибок алгоритмов систем и сведение их к минимуму с учетом морфогенеза системы. Объект испытаний помещают в программный комплекс имитации группового телеметрического сигнала и моделируют ситуации, степень агрегации которых ниже агрегирующей способности объекта испытаний, проводят настройку весов и ребер графа, получают многомерный граф реализации решающей функции, который дифференциально отображают на плоскость, и при этом выявляют характерные построения. Моделируют ситуации, вызывающие инициацию вершин и ребер графа, образующих характерные построения, порождая новый многомерный граф, с новыми характерными построениями на проекции. Таким образом, итеративно проводят перестройку графа реализации решающей функции. 6 ил. способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376

способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376 способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376 способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376 способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376 способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376 способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376

Формула изобретения

Способ испытаний автоматизированных систем сбора, обработки и анализа информации на основе выявления и принудительной инициации областей ошибок и джокеров, основанный на исследовании отображений многомерных графов решающей функции способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376 (Prim), поиске аттракторов системных и синтаксических ошибок, перестройке графов и дальнейшей их инициации с последующей аннигиляцией множества ошибок; объект испытаний помещают в программный комплекс имитации группового телеметрического сигнала, моделируют ситуации, степень агрегации которых ниже агрегирующей способности объекта испытаний; повторяют моделирование до третьего ошибочного результата реализации решающей функции; после каждого ошибочного результата производят настройку весов объекта испытаний или перестройку алгоритма, исправляющую причину ошибки, если это не предусмотрено автоматически; результаты моделирования на всем временном интервале испытаний преобразуют в многомерный граф реализации решающей функции, представляющий собой совокупность путей обработки данных и условий перехода между ними, каждое измерение которого соответствует каждому начальному состоянию в момент нового моделирования; строят дифференциальное отображение графа на плоскость, проекция которого образует характерные построения; программным комплексом имитации группового телеметрического сигнала производят моделирование ситуаций, вызывающих инициацию вершин и ребер графа, образующих характерные построения, порождающие новый многомерный граф с новыми характерными построениями на проекции; таким образом итеративно проводят перестройку графа реализации решающей функции, идентифицируя и аннигилируя системные и синтаксические ошибки, и тем самым уменьшают их и сокращают время испытаний.

Описание изобретения к патенту

Изобретение относится к способам испытаний автоматизированных систем сбора, обработки и анализа информации, а также систем искусственного интеллекта и может быть использовано, в частности, при разработке, испытаниях, исследовании и совершенствовании автоматизированных систем сбора, обработки и анализа информации, в том числе специальных программных комплексов системы информационно-телеметрического обеспечения образцов ракетно-космической техники.

Автоматизированные сбор, обработка и анализ информации являются основой обеспечения автоматизированного управления сложными техническими объектами. Постоянное совершенствование и усложнение технической стороны объектов, вызванное научно-техническим прогрессом, требует постоянного развития и совершенствования систем сбора, обработки и анализа информации на различных этапах их функционирования (Системный анализ и организация автоматизированного управления космическими аппаратами / Мануйлов Ю.С., Павлов A.M., Новиков Е.А. [и др.]. СПб.: ВКА им. А.Ф. Можайского, 2010). Поэтому испытания автоматизированных систем сбора, обработки и анализа информации являются одним из важнейших аспектов по поддержанию актуальности процесса их развития и совершенствования.

Испытания автоматизированных систем сбора, обработки и анализа информации представляют собой процесс анализа алгоритма и весовых характеристик системы. На сегодняшний день существует два основных способа испытаний автоматизированных систем сбора, обработки и анализа информации (Гагарина Л.Г., Кокорева Е.В., Виснадул Б.Д. Технология разработки программного обеспечения. М.: ИД «Форум» - ИНФРА-М, 2009):

1. Способ испытаний, основанный на анализе программного кода и испытаниях в соответствии с аксиомами Майерса. В этом случае исправление ошибок происходит непосредственно в участках кода, приводящих к ошибкам.

2. Способ испытаний, основанный на испытаниях автоматизированной системы сбора, обработки и анализа информации на имитаторе технического объекта (программном или аппаратном). В этом случае исправление ошибок происходит в программном модуле. При необходимости внесения изменений в алгоритм отдельно взятого программного модуля необходимо обращение к первому способу испытаний.

В то же время, ввиду необходимости постоянной настройки, модификации и (или) обучения, алгоритм и весовые характеристики автоматизированной системы сбора, обработки и анализа информации подвергаются постоянным изменениям в процессе ее совершенствования, штатной эксплуатации и самих испытаний. Это приводит к тому, что в процессе применения существующих способов испытаний, как правило, происходит идентификация синтаксических ошибок. Системные же ошибки выявляются только в процессе длительной эксплуатации. Кроме того, в процессе эксплуатации могут образовываться новые системные ошибки, базирующиеся на заложенных в начальном алгоритме (архитектуре) посылках к ним. Следовательно, возникает необходимость выявлять системные ошибки и посылки к ним на этапе испытаний, учитывая при этом возможные пути морфогенеза системы обработки и анализа информации.

Цель изобретения - выявление в процессе испытаний системных и синтаксических ошибок алгоритмов (архитектуры) систем автоматизированных сбора, обработки и анализа информации и сведение их к естественному минимуму, с учетом морфогенеза системы.

Цель достигнута тем, что проводится построение многомерного графа реализации решающей функции объекта испытания, строится его отображение, определяются характерные структуры (складки, сборки), выявляющие системные ошибки, проводится принудительная инициация этих ошибок, в результате чего происходит искусственное ускорение процесса морфогенеза объекта испытаний, перестройка многомерных графов реализации, выявление аттракторов множества системных ошибок, их идентификация и аннигиляция, то есть их автоматическое исправление.

Способ испытаний на основе выявления и принудительной инициации областей ошибок и джокеров основывается на следующих допущениях:

1. Цепи событий, активирующие процесс морфогенеза, являются хаотичными.

2. Множества исходов реализации решающей функции объекта испытаний f(Prim) - то есть функции, осуществляющей определение технического состояния объекта приложения системы обработки и анализа информации - являются нечеткими.

При этом выделяются следующие классы исходов S решающей функции f(Prim):

1. Верный исход решающей функции - стойкий исход, соответствующий реальному физическому процессу, происходящему на объекте исследования и удовлетворяющий корректному решению задачи анализа. Множество верных исходов обозначим N.

2. Неверный исход реализации решающей функции - любой исход, не соответствующий реальному физическому процессу, происходящему на объекте исследования. Множество неверных исходов обозначим AbN.

При этом класс неверных исходов дополнительно подразделяется на следующие подмножества:

1. Достаточно неверный исход реализации решающей функции - неверный исход, на данном этапе исследования объекта не удовлетворяющий корректному решению задачи анализа и непригодный для дальнейших вычислений. Множество достаточно неверных исходов обозначим E.

2. Метаневерный исход реализации решающей функции - регулярный неверный исход, удовлетворяющий корректному решению задачи анализа. Множество метаневерных исходов обозначим metE.

3. Аномальный исход реализации решающей функции - нерегулярный исход, в определенной ситуации способный являться как верным, так и неверным исходом. Множество аномальных исходов, являющееся, таким образом, областью джокеров (Структуры и хаос в нелинейных средах / Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г. [и др.]. М.: ФИЗМАТЛИТ, 2007), обозначим J. Таким образом,

способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376

Испытания проводятся путем помещения объекта испытаний в программный комплекс имитации группового телеметрического сигнала (Иванов К.С. Разработка программного комплекса имитации группового телеметрического сигнала автоматизированного комплекса обработки телеметрической информации, сборник статей XV научно-технической конференции. Кубинка: филиал ВКА им. А.Ф. Можайского, 2010), моделирования и идентификации в нем граничных областей путем генерирования ситуаций, степень агрегации которых ниже агрегирующей способности объекта испытаний. Моделирование повторяется до третьего ошибочного результата реализации решающей функции. После каждого ошибочного результата, производится настройка весов объекта испытаний или перестройка алгоритма, исправляющая причину ошибки, если это не предусмотрено автоматически. Результаты моделирования на всем временном интервале испытаний преобразуются в многомерный граф реализации решающей функции, представляющий собой совокупность путей обработки данных и условий перехода между ними, каждое измерение которого соответствует каждому начальному состоянию в момент нового моделирования. Строится дифференциальное отображение графа на плоскость, а проекция образует характерные построения - складки и сборки Уитни, седла, узлы и т.д. (Арнольд В.И. Теория катастроф, М.: Наука, 1990). В складки Уитни при этом попадают области джокеров, а наличие сборок говорит об избыточности или наличии предельных циклов.

Программным комплексом имитации группового телеметрического сигнала производится моделирование ситуаций, вызывающих инициацию вершин графа и ребер, образующих характерные построения, порождающую новый многомерный граф, с новыми характерными построениями на проекции.

После обнаружения характерных проекций производится перестройка отображения в соответствии с правилами перестройки Морса. Перестройка вызывает построение новых характерных проекций, что вызвано морфогенезом системы по аттрактору области джокера. При испытаниях статичного объекта аттрактор стационарен, при испытаниях динамичного объекта (системы на базе искусственного интеллекта или модифицируемой системе) аттрактор, как правило, странный. Аттрактор в процессе морфогенеза вырождается в стационарный аттрактор или предельный цикл. Движение по аттрактору при соблюдении указанных выше условий приводит к полной или в целом полной (до естественного минимума) аннигиляции множества AbN (Иванов К.С. Методика испытаний новых видов и образцов автоматизированных систем сбора, обработки и анализа измерительной информации ракетно-космических комплексов: материалы V всероссийской конференции «Искусственный интеллект: философия, методология, инновации». М., 2011):

способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376

где mf(t) - функция морфогенеза,

µ - функция принадлежности,

x - естественный минимум множества J.

Приближение к естественному минимуму реализуется за счет моделируемого катализа процесса релаксации переменной, происходящего при инициации областей джокера.

При поиске аттрактора руководствуются топологическими характеристиками множества S. При исследовании топологических характеристик осуществляются следующие операции:

1. Определение топологических групп и факторгрупп.

2. Поиск изо- и гомоморфизмов, в том числе локальных, а также непрерывных представлений и строгих морфизмов.

3. Поиск подколец, идеалов и факторколец.

4. Поиск связей компонентов групп.

5. Построение числовых и проективных пространств.

Величиной, характеризующей результативность испытания, при этом является функция сокращения множества неверных исходов g(t), показывающая качественные изменения графа испытаний. На фиг.1 показаны графики функции g(t), полученные при испытаниях модельной автоматизированной системы обработки и анализа информации, с привнесенной в нее 1000 ошибок, существующим и разработанным способами.

Экстремальные всплески функции при этом характеризуют начало овражного сокращения областей ошибок или их переходы в области metE. Амплитуда колебания способ испытаний автоматизированных систем сбора, обработки и   анализа информации на основе выявления и принудительной инициации   областей ошибок и джокеров, патент № 2520376 Prim при этом характеризует величину областей джокера.

Анализируя функцию сокращения множества неверных исходов g(t), можно утверждать, что при любом способе испытаний множество ошибок стремится прийти к стационарному распределению и релаксации, тем самым процесс реализации решающей функции по своей сути является диссипативным. Построение бифуркационной диаграммы подобного процесса позволяет определить характерные черты хаотического процесса, что подтверждает истинность допущения о хаотичности объекта испытаний.

Рассмотрение дисперсий полезных (то есть реализующих целевую функцию испытаний) моделируемых ситуаций, показанных на фиг.2, при существующих и разработанных способах испытаний также свидетельствует о многократном повышении эффективности испытаний.

Проверка способа испытаний была проведена двумя способами:

1. При испытаниях простейшей модели статичной системы анализа технического состояния модельного космического аппарата, с 15 внесенными в нее дефектами (системными и синтаксическими). Сравнение проводилось со способом испытаний на основе правил испытаний общего программного обеспечения. На фиг.3, 4, 5 показаны схематичные отображения графов реализации решающей функции на различных этапах испытаний. На момент гармонизации функции g(t) и релаксации eе переменной существующий способ испытаний идентифицировал 5 из 15 введенных в систему ошибок, то есть 33,33% от общего числа ошибок. Разработанный способ идентифицировал 13 внесенных ошибок (86.66%), то есть идентифицируемость ошибок за временной интервал в 2,6 раза выше. На фиг.6 приведены графики сокращения функции множества неверных исходов при использовании существующих и предлагаемых подходов.

2. При испытаниях сложной и динамичной системы (тысяча внесенных ошибок). Сравнение проводилось со способом, основанным на применении статистически накопленной информации и использовании генераторов сигналов. На момент гармонизации при существующих способах испытаний идентифицировано 776 ошибок, то есть 77,6% от общего числа. Разработанный же способ позволил идентифицировать 964 ошибок, то есть 96,4% ошибок. Таким образом, идентифицируемость ошибок повышена в 1,24 раза. При этом время испытаний сократилось в 2,2 раза. При испытаниях системы с 1200 внесенными ошибками на момент гармонизации при существующих способах испытаний иднтифицировано 927 ошибок, то есть 77,2% ошибок. Разработанный же метод позволил идентифицировать 1173 ошибки, то есть 97,7% ошибок. При этом время испытаний сократилось в 2,3 раза.

Следовательно, можно сделать вывод об эффективности способа испытания автоматизированных систем сбора, обработки и анализа информации на основе выявления и принудительной инициации областей ошибок и джокеров.

Источники информации

1. Арнольд В.И. Теория катастроф, М.: Наука, 1990.

2. Структуры и хаос в нелинейных средах / Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г. [и др.]. М.: ФИЗМАТЛИТ, 2007.

3. Гагарина Л.Г., Кокорева Е.В., Виснадул Б.Д. Технология разработки программного обеспечения. М.: ИД «Форум» - ИНФРА-М, 2009.

4. Иванов К.С. Разработка программного комплекса имитации группового телеметрического сигнала автоматизированного комплекса обработки телеметрической информации, сборник статей XV научно-технической конференции. Кубинка: филиал ВКА им. А.Ф. Можайского, 2010.

5. Иванов К.С. Методика испытаний новых видов и образцов автоматизированных систем сбора, обработки и анализа измерительной информации ракетно-космических комплексов: материалы V всероссийской конференции «Искусственный интеллект: философия, методология, инновации». М., 2011.

6. Системный анализ и организация автоматизированного управления космическими аппаратами / Мануйлов Ю.С., Павлов A.Н., Новиков Е.А. [и др.]. СПб.: ВКА им. А.Ф. Можайского, 2010.

Класс G06N7/06 моделирование на компьютерах общего назначения

устройство для моделирования систем массового обслуживания -  патент 2465647 (27.10.2012)
использование абстрактных описаний для генерации, обмена и конфигурирования рабочих циклов сервиса и клиента -  патент 2405202 (27.11.2010)
способ шихаева обучения решению алгебраических и неопределенных уравнений численным моделированием на основе единого решателя -  патент 2389082 (10.05.2010)
генерация последовательности операций по комплексному анализу на основе предсказательной модели одиночной скважины - модульного динамического тестера (swpm-mdt) -  патент 2336567 (20.10.2008)
способ компьютерного моделирования центровки грузового самолета типа ан-124-100 -  патент 2331109 (10.08.2008)
способ автоматического моделирования системы управления процессом и система управления процессом -  патент 2294015 (20.02.2007)
способ фиксации и визуализации вида изменяющегося объекта в любой из моментов или периодов времени (варианты) -  патент 2285288 (10.10.2006)
устройство для моделирования процесса принятия решений -  патент 2262131 (10.10.2005)
система для определения стоимости проекта -  патент 2259593 (27.08.2005)
устройство для моделирования процесса принятия решений -  патент 2214624 (20.10.2003)
Наверх