модульная донная станция

Классы МПК:G01V11/00 Разведка или обнаружение с использованием комбинированных способов, представляющих собой сочетание двух и более способов, отнесенных к группам  1/00
G01V8/00 Разведка или обнаружение оптическими средствами
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П. Ширшова Российской академии наук (RU)
Приоритеты:
подача заявки:
2012-12-04
публикация патента:

Изобретение относится к области гидрофизических исследований и может быть использовано для исследований, проводимых в океане. Сущность: станция содержит плавучесть (1) из синтактика, внутри которой закреплены автономные модули (2, 3) с датчиками (4). Модули (2, 3) заключены в бароустойчивые корпуса. Бароустойчивые корпуса выполнены с прозрачными вставками (5), выдерживающими внешнее давление. Внутри каждой из вставок (5) расположены излучатель и приемник (6) оптического сигнала. При этом размещение автономных модулей должно обеспечивать оптическую связь излучателей и приемников всех автономных модулей. Технический результат: повышение надежности работы, упрощение эксплуатации. 1 ил. модульная донная станция, патент № 2521218

модульная донная станция, патент № 2521218

Формула изобретения

Модульная донная станция, содержащая жесткий поплавок из синтактика, в котором закреплены автономные модули, заключенные в бароустойчивые корпуса, каждый из которых предназначен для измерения одного из регистрируемых станцией параметров, отличающаяся тем, что каждый бароустойчивый корпус имеет оптически прозрачную вставку, выдерживающую внешнее давление, в которой расположены излучатель и приемник оптического сигнала, при этом размещение автономных модулей должно обеспечивать оптическую связь излучателей и приемников всех автономных модулей.

Описание изобретения к патенту

Настоящее предлагаемое изобретение относится к области исследования океана и может быть использовано для комплексного измерения гидрофизических параметров в океанологии, гидрофизике и гидрографии.

Известна донная станция для измерения гидрофизических параметров, содержащая жесткий опорный корпус, объединяющий микропроцессор с подключенными к нему блоками аналого-цифровой обработки сигналов, связанными через бароустойчивые разъемы с гидрофизическими датчиками [1]. Система MINIpack имеет возможность использовать 16 каналов измерений сигналов от внешних датчиков как в притопленном, так и буксируемом режиме, а также возможность замены измерителей путем разборки корпуса и установки датчиков в объединяющем бароустойчивом корпусе. Наличие корпуса не только затрудняет перекомпоновку для рекомбинации и требует стационарных условий для последующей метрологической поверки всей системы, но и ограничивает возможности вариабельности измеряемых параметров конкретным объемом, что весьма существенно в процессе экспедиции или рейса судна. В большинстве случаев требуется возможность оперативно варьировать набором измеряемых параметров в процессе дорогостоящего рейса научного судна или экспедиции. Известная станция не может обеспечить высокого качества по причине указанных недостатков.

Известна система для измерения гидрофизичечких параметров, содержащая жесткий поплавок из синтактика, в котором закреплены автономные модули, заключенные в бароустойчивые корпуса, каждый из которых предназначен для измерения одного из регистрируемых станцией параметров [2].

Известная система позволяет оперативно изменять количество контролируемых параметров, но по-прежнему требует механических манипуляций, связанных с использованием гермовводов электрических цепей и их монтажем, следствием чего является снижение надежности работы всей системы и сложность ее эксплуатации.

Целью настоящего изобретения является увеличение надежности работы морских измерительных станций, упрощение их эксплуатации и унификация морской измерительной техники.

Поставленная цель достигается тем, что в известной измерительной системе, содержащей жесткий поплавок из синтактика, в котором закреплены автономные модули, заключенные в бароустойчивые корпуса, каждый из которых предназначен для измерения одного из регистрируемых станцией параметров, каждый бароустойчивый корпус имеет оптически прозрачную вставку, выдерживающую внешнее давление, в которой расположены излучатель и приемник оптического сигнала, при этом размещение автономных модулей должно обеспечивать оптическую связь излучателей и приемников всех модулей.

В предлагаемой станции электрическая связь заменена на оптическую, что позволяет гибко и в широких пределах изменять компоновку станции, ее назначение и условия работы. Ведущий модуль устройства снимает информацию с датчиковых модулей по световому беспроводному каналу и накапливает ее в энергонезависимой памяти типа FLASH-карты. При этом для связи между модулями не требуются герморазъемы и подводные кабели. Упрощается замена измерительных модулей в конструктиве, что повышает потребительскую привлекательность комплекса, его вариабельность. Также упрощается поверка автономных датчиковых модулей, способных работать самостоятельно.

Пример практической реализации

На чертеже - фиг.1 - показано устройство модульной донной станции. Она содержит плавучесть из синтактика - 1, в которой размещены ведущий модуль - 2 и измерительные модули - 3 с датчиками - 4, содержащие весь набор аппаратуры для измерения какого-то одного параметра (давления, солености, скорости потока и пр.). Обычно бароустойчивые корпуса выполняются из металла. Внизу модулей 2, 3 находятся вставки - 5 из прозрачного для светового излучения материала (например, из акрилового стекла), внутри которых расположены приемо-передающие модемы с излучателями и фотоприемниками - 6. Материал вставок должен выдерживать давление на рабочей глубине. Станция содержит традиционные для подводных станций размыкатель балласта - 7 и сам балласт -8, находящийся на дне - 9. Работа донной станции не отличается от известных измерительных систем современной архитектуры.

Каждый модуль измерительной станции работает в автономном режиме независимо от остальных модулей, но по программе, написанной для всей системы и хранящейся в памяти программ ведущего модуля. Такая система формируется под задачу непосредственно перед измерениями из готовых к употреблению отдельных модулей. Предлагаемая станция очень удобна в эксплуатации. После подъема на поверхность вся информация, накопленная в ведущем блоке, может быть считана на персональный компьютер по скоростному WiFi-каналу.

Источники информации

1. Chelsea Technologies Group - Sensors - MINIpack CTD-F, Sensor Suite Compact, Smart Media based multi-parameter monitoring system for oceanography and limnology, Chelsea Technologies Group 55 Central Avenue, Molesey, Surrey, KT8 2QZ, UK.

http://www.chelsea.co.uk/lnstruments%20MINIPACK.htm.

2. Патент России № 2350934.

Класс G01V11/00 Разведка или обнаружение с использованием комбинированных способов, представляющих собой сочетание двух и более способов, отнесенных к группам  1/00

способы и системы для скважинной телеметрии -  патент 2529595 (27.09.2014)
способ геофизической разведки залежей углеводородов -  патент 2527322 (27.08.2014)
способ геохимической разведки -  патент 2525644 (20.08.2014)
способ обнаружения возможности наступления катастрофических явлений -  патент 2521762 (10.07.2014)
способ определения нефтенасыщенных пластов -  патент 2517730 (27.05.2014)
способ разработки нефтяных залежей -  патент 2513895 (20.04.2014)
способ поиска и добычи нефти -  патент 2507381 (20.02.2014)
способ и устройство для определения во время бурения насыщения водой пласта -  патент 2503981 (10.01.2014)
способ прогнозирования глубокозалегающих горизонтов на акваториях по результатам тренд-анализа магнитных и гравитационных аномалий -  патент 2501047 (10.12.2013)
способ дистанционного поиска новых месторождений нефти и газа -  патент 2498358 (10.11.2013)

Класс G01V8/00 Разведка или обнаружение оптическими средствами

способ дистанционного определения характеристик среды открытого водоема -  патент 2503041 (27.12.2013)
способ исследования керна горных пород -  патент 2501046 (10.12.2013)
способ дистанционного поиска новых месторождений нефти и газа -  патент 2498358 (10.11.2013)
способ исследования скважин оптическими методами для определения количества остаточных извлекаемых запасов разрабатываемого месторождения -  патент 2496982 (27.10.2013)
датчик для использования с автоматической дверью -  патент 2471208 (27.12.2012)
способ поиска подземных вод -  патент 2465621 (27.10.2012)
способ определения источников выбросов в атмосферу по изображениям мегаполисов -  патент 2463630 (10.10.2012)
способ генерирования численных псевдокернов с использованием изображений скважины, цифровых образов породы и многоточечной статистики -  патент 2444031 (27.02.2012)
система определения координат трассы подземного трубопровода -  патент 2437127 (20.12.2011)
способ дистанционной диагностики магистральных трубопроводов -  патент 2428722 (10.09.2011)
Наверх