способ каротажа скважин гамма и нейтронным излучением
Классы МПК: | G01V5/00 Разведка или обнаружение с использованием ядерных излучений, например естественной или искусственной радиоактивности |
Автор(ы): | Черноусов Юрий Дмитриевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное учреждение науки Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской академии наук (ИХКГ СО РАН) (RU) |
Приоритеты: |
подача заявки:
2013-03-04 публикация патента:
27.06.2014 |
Использование: для каротажа скважин гамма и нейтронным излучением. Сущность изобретения заключается в том, что при формировании излучения источник заряженных частиц - ускоритель - располагают вне скважины, излучатель располагают в скважине и пучок подводят к излучателю по трубе, выведенной из скважины и подсоединенной к ускорителю. Технический результат: расширение функциональных возможностей и области применения способа каротажа скважин гамма и нейтронным излучением. 1 ил.
Формула изобретения
Способ каротажа скважин гамма и нейтронным излучением, полученным при торможении ускоренного пучка заряженных частиц в излучателе, характеризующийся тем, что при формировании излучения источник заряженных частиц - ускоритель - располагают вне скважины, излучатель располагают в скважине и пучок подводят к излучателю по трубе, выведенной из скважины и подсоединенной к ускорителю.
Описание изобретения к патенту
Известен способ каротажа скважин гамма и нейтронным излучением, формируемым радиоактивным источником, расположенным в контейнере, погружаемом в исследуемую скважину [1]. Способ имеет ограничения из-за относительно низких и фиксированных энергии излучения и интенсивности применяемых для каротажа известных радиоактивных источников.
Кроме того, радиоактивный источник опасен при производстве работ.
Известен способ «электронного» каротажа скважин, характеризующийся тем, что для формирования гамма излучения и нейтронного излучения используют мощный направленный пучок ускоренных электронов с высокой энергией и регулируемой интенсивностью [2].
Для осуществления способа электронного каротажа [2] предложено применение погружаемого в исследуемую скважину контейнера, в котором расположен ускоритель электронов (в [2] - бетатрон). В более поздних разработках, развивающих данный способ, для формирования пучка электронов предложено использование линейного электронного ускорителя, позволяющего регулировать как ток, так и энергию пучка [3].
Как отмечено в [2], [3], ускоритель заряженных частиц является выключаемым источником ионизирующего излучения, что повышает безопасность работ.
Однако способ [2], в том числе и с использованием линейного электронного ускорителя [3], не применим для каротажа скважин относительно небольшого диаметра. Кроме того, и для скважин большого диаметра возможность применения способа ограничена весом ускорителя. Ограничения по весу и размерам контейнера не позволяют достичь значительных энергии и тока ускоренного пучка и, следовательно, энергии и интенсивности гамма и нейтронного излучения. По указанным причинам способ каротажа скважин путем формирования излучения для каротажа с помощью ускорителя, погружаемого в исследуемую скважину, практического применения не получил.
Задачей, решаемой заявляемым изобретением, является расширение функциональных возможностей и области применения способа каротажа скважин гамма и нейтронным излучением, полученным при торможении ускоренного пучка заряженных частиц в мишени излучателя, за счет расширения диапазона регулирования энергии и интенсивности излучения при одновременном уменьшении возможного диаметра исследуемых скважин.
Заявленный технический результат достигается тем, что при формировании излучения для каротажа источник заряженных частиц -ускоритель располагают вне скважины на поверхности Земли, излучатель помещают в скважине и пучок для формирования излучения подводят к излучателю в скважине по трубе, подсоединенной к ускорителю.
На чертеже представлена блок-схема устройства для реализации предложенного способа. Ускоритель заряженных частиц 1, например линейный ускоритель электронов, расположен на поверхности Земли, излучатель 2, например вольфрамовая пластина, расположен в скважине. Ускоренный пучок заряженных частиц от ускорителя 1 транспортируется к излучателю 2 по трубе 3, выведенной из скважины 4 и подсоединенной к ускорителю 1.
Заявляемый эффект достигается за счет того, что в соответствии с предлагаемым способом при формировании излучения для каротажа скважины источник заряженных частиц - ускоритель располагают вне скважины на поверхности Земли, излучатель располагают в скважине и пучок подводят к излучателю в скважине по трубе, выведенной из скважины и подсоединенной к ускорителю.
Действительно, поскольку ускоритель находится вне скважины, например размещен на поверхности Земли, нет ограничения на размеры и вес устройства в целом, что позволяет использовать ускоритель, обеспечивающий заданную (необходимую) энергию и интенсивность пучка. Диаметр трубы для транспортировки пучка может быть относительно небольшим, что позволяет установить трубу в скважину, вводить и транспортировать пучок к излучателю в широком диапазоне диаметра скважин. По указанным причинам использование предложенного способа расширяет функциональные возможности и область применения способа каротажа гамма и нейтронным излучением, полученным при торможении ускоренного пучка заряженных частиц в мишени излучателя.
Источники информации
[1] Грунты. Методы радиоизотопных измерений плотности и влажности. ГОСТ 23061-90, с.3.
[2] В.М. Запорожец, С.А.Кантор, В.В.Сулин, Е.М.Филиппов. Способ электронного каротажа скважин и устройство для его осуществления. А.с. № 111864, 1956.
[3] R.E.Turcotte, J.S.Wahl. WELL LOGGING SONDE INCLUDING A LINIAR PARTICLE ACCELERATOR. Patent US № 4093854. 1978.
Класс G01V5/00 Разведка или обнаружение с использованием ядерных излучений, например естественной или искусственной радиоактивности