система генерирования электрической энергии трехфазного переменного тока повышенного напряжения
Классы МПК: | H02J3/02 с использованием одной сети для одновременного распределения электрической энергии на различных частотах; с использованием одной сети для одновременного распределения электрической энергии переменного и постоянного тока H02P9/00 Устройства для управления электрическими генераторами с целью получения требуемого значения выходных параметров |
Автор(ы): | Харитонов Сергей Александрович (RU) |
Патентообладатель(и): | Федеральное государственное унитарное предприятие Производственное объединение "Север" (RU) |
Приоритеты: |
подача заявки:
2012-06-21 публикация патента:
27.06.2014 |
Изобретение: в области электротехники. Технический результат - снижение массы синхронного генератора за счет повышения входного коэффициента мощности статического преобразователя электрической энергии. Система содержит синхронный генератор с возбуждением от постоянных магнитов и тремя гальванически развязанными системами трехфазных обмоток на статоре, статический преобразователь электрической энергии на базе трехфазного по выходу непосредственного преобразователя частоты с естественной коммутацией (циклоконвертора), каждая выходная фаза которого собрана по схеме трехфазного мостового реверсивного выпрямителя (МРВ) с параллельно включенным его выходным зажимам конденсатором низкочастотного фильтра и запитанного от одной из трехфазных систем обмоток синхронного генератора, один из выходных выводов МРВ подключен к соответствующей фазе трехфазной нагрузки. Вводится еще одна фаза непосредственного преобразователя частоты с естественной коммутацией, собранная по схеме трехфазного мостового выпрямителя с параллельно включенным его выходным зажимам конденсатором низкочастотного фильтра, запитанного от трехфазного трансформатора, первичные обмотки которого соединены с любой из трех трехфазных систем обмоток синхронного генератора, к одному из выводов введенной фазы непосредственного преобразователя частоты подключаются вторые выводы трех МРВ, а второй вывод введенной фазы непосредственного преобразователя частоты соединяют с нулевым проводом нагрузок системы генерирования. 4 ил.




Формула изобретения
Система генерирования электрической энергии трехфазного переменного тока повышенного напряжения, содержащая синхронный генератор с возбуждением от постоянных магнитов и тремя гальванически развязанными системами трехфазных обмоток на статоре, статический преобразователь электрической энергии на базе трехфазного по выходу непосредственного преобразователя частоты с естественной коммутацией (циклоконвертора), каждая выходная фаза которого собрана по схеме трехфазного мостового реверсивного выпрямителя с параллельно включенным его выходным зажимам конденсатором низкочастотного фильтра и запитанного от одной из трехфазных систем обмоток синхронного генератора, один из выходных выводов мостового реверсивного выпрямителя подключен к соответствующей фазе трехфазной нагрузки, отличающаяся тем, что вводят еще одну фазу непосредственного преобразователя частоты с естественной коммутацией, собранную по схеме трехфазного мостового выпрямителя с параллельно включенным его выходным зажимам конденсатором низкочастотного фильтра, запитанного от трехфазного трансформатора, первичные обмотки которого соединяют с любой из трех трехфазных систем обмоток синхронного генератора, к одному из выводов введенной фазы непосредственного преобразователя частоты подключают вторые выводы трех мостовых реверсивных выпрямителей, а второй вывод введенной фазы непосредственного преобразователя частоты соединяют с нулевым проводом нагрузок системы генерирования.
Описание изобретения к патенту
Изобретение относится к области электротехники и силовой электроники и может быть использовано при построении систем генерирования электрической энергии трехфазного переменного тока повышенного напряжения для летательных аппаратов, в которых для достижения качественных показателей выходной энергии применяются статические преобразователи электрической энергии (СПЭЭ). Первичными источниками с нестабильными параметрами входной энергии в таких системах служит синхронный генератор с переменной скоростью вращения вала. Функция обеспечения качественных показателей генерируемой электрической энергии возлагается на статический преобразователь и выходной силовой низкочастотный фильтр.
Для указанного применения систем генерирования важным показателем является масса всех элементов системы, при проектировании которых необходимо стремиться к ее уменьшению. Масса синхронного генератора при работе со статическим преобразователем электрической энергии в значительной степени определяется величиной входного коэффициента мощности статического преобразователя ( cn), поэтому возникает задача повышения величины данного коэффициента.
Известна система генерирования электрической энергии трехфазного переменного тока, состоящая из синхронного генератора и статического преобразователя электрической энергии [Джюджи Л., Пелли Б. Силовые полупроводниковые преобразователи частоты: Теория, характеристики, применение. Пер. с англ. - М.: Энергоатомиздат, 1983. - 400 с.], содержащая шестифазный синхронный генератор с выводом нулевого провода и электромагнитным возбуждением, статический преобразователь электрической энергии на базе трехфазного по выходу непосредственного преобразователя частоты с естественной коммутацией (циклоконвертора), каждая выходная фаза которого собрана по схеме шестифазного реверсивного выпрямителя с двумя уравнительными реакторами, и трех низкочастотных LC-фильтров.
Данная система обладает рядом недостатков. Наличие электромагнитного возбуждения синхронного генератора требует введения вращающихся контактов или значительного усложнения конструкции генератора за счет увеличения числа ступеней преобразования электрической энергии, что приводит к уменьшению надежности системы, повышению эксплуатационных расходов и массы. К недостаткам следует отнести также и то, что в составе статического преобразователя имеется шесть уравнительных реакторов. Все они работают на относительно низкой частоте выходного напряжения системы генерирования, поэтому имеют достаточно высокую массу. Кроме этого, синхронный генератор выполняется с успокоительными обмотками с целью уменьшения его выходных реактансов, это требуется для обеспечения независимой коммутации тиристоров в разных выходных фазах статического преобразователя. В этом случае коммутация тиристоров получается «жесткой» с резким обрывом коммутируемого тока, поэтому возникает необходимость применения защитных RC цепей (снаберов напряжения) для снятия перенапряжений на тиристорах. При широком диапазоне изменения частоты и величины напряжения синхронного генератора масса их получается значительной. К недостаткам также относится относительно низкое значение входного коэффициента мощности данной схемы статического преобразователя, что приводит к увеличению массы синхронного генератора. При использовании данной схемы статического преобразователя в системе генерирования электрической энергии трехфазного переменного тока повышенного напряжения появляется еще один недостаток, обусловленный тем, что повышение величины выходного напряжения приведет к необходимости увеличения класса тиристоров или к необходимости последовательного включения тиристоров. В первом случае, при увеличении класса тиристоров ухудшатся частотные свойства схемы и, как следствие, увеличатся масса и габариты LC-фильтров. Во втором случае, при последовательном включении тиристоров увеличатся масса и габариты статического преобразователя за счет увеличения числа тиристоров и необходимых для деления напряжения на тиристорах снаберов.
Кроме того, известна система генерирования электрической энергии трехфазного переменного тока повышенного напряжения [Грабовецкий Г.В., Куклин О.Г., Харитонов С.А. Непосредственные преобразователи частоты с естественной коммутацией для электромеханических систем. Учеб. пособие. - Новосибирск.: НГТУ, 2009. - 320 с.], которая является прототипом предлагаемого изобретения, содержащая синхронный генератор с возбуждением от постоянных магнитов и тремя гальванически развязанными системами трехфазных обмоток на статоре, статический преобразователь электрической энергии на базе трехфазного по выходу непосредственного преобразователя частоты с естественной коммутацией (циклоконвертора), каждая выходная фаза которого собрана по схеме трехфазного мостового реверсивного выпрямителя с параллельно включенным его выходным зажимам конденсатором низкочастотного фильтра и запитанного от одной из трехфазных систем обмоток синхронного генератора, один из выходных выводов мостового реверсивного выпрямителя подключен к соответствующей фазе трехфазной нагрузки, а вторые выводы - к нулевому проводу нагрузки.
Недостатком данной системы является низкое значение входного коэффициента мощности статического преобразователя электрической энергии и, как следствие, увеличенная масса синхронного генератора.
Задача изобретения - снижение массы синхронного генератора за счет повышения входного коэффициента мощности статического преобразователя электрической энергии.
Поставленная задача достигается тем, что в известной системе генерирования электрической энергии трехфазного переменного тока повышенного напряжения, содержащей синхронный генератор с возбуждением от постоянных магнитов и тремя гальванически развязанными системами трехфазных обмоток на статоре, статический преобразователь электрической энергии на базе трехфазного по выходу непосредственного преобразователя частоты с естественной коммутацией (циклоконвертора), каждая выходная фаза которого собрана по схеме трехфазного мостового реверсивного выпрямителя с параллельно включенным его выходным зажимам конденсатором низкочастотного фильтра и запитанного от одной из трехфазных систем обмоток синхронного генератора, один из выходных выводов мостового реверсивного выпрямителя подключен к соответствующей фазе трехфазной нагрузки, вводится еще одна фаза непосредственного преобразователя частоты с естественной коммутацией, собранная по схеме трехфазного мостового выпрямителя с параллельно включенным его выходным зажимам конденсатором низкочастотного фильтра, запитанного от трехфазного трансформатора, первичные обмотки которого соединены с любой из трех трехфазных систем обмоток синхронного генератора, к одному из выводов введенной фазы непосредственного преобразователя частоты подключаются вторые выводы трех мостовых реверсивных выпрямителей, а второй вывод данного непосредственного преобразователя частоты соединяют с нулевым проводом нагрузок системы генерирования.
Схема предлагаемой системы генерирования электрической энергии трехфазного переменного тока приведена на фиг.1.
Система генерирования включает синхронный генератор с возбуждением от постоянных магнитов и тремя гальванически развязанными системами трехфазных обмоток на статоре (1), статический преобразователь электрической энергии (2) и трехфазный трансформатор (3).
Выводы трехфазных обмоток генератора (TO1 , TO2, TO3) соединены с тремя соответствующими трехфазными входами (TB1, TB2, TB3 ) непосредственных преобразователей частоты (4, 5, 6). Любая из трехфазных обмоток генератора (TO1, ТO2 , ТO3) соединена с первичными обмотками трехфазного трансформатора (3), выходная трехфазная обмотка которого соединена с трехфазным входом ТВ4 непосредственного преобразователя (7) Для определенности на фиг.1 к первичной обмотке трансформатора (3) подключены выводы трехфазной обмотки ТO3. Статический преобразователь содержит четыре одинаковых по топологии непосредственных преобразователей частоты (4, 5, 6, 7). Трехфазные входы преобразователей частоты соединены с одноименными трехфазными выводами трехфазных обмоток генератора (TO1, ТO2, ТO3 ). Каждый непосредственный преобразователь частоты содержит трехфазный мостовой реверсивный выпрямитель (8) и конденсатор низкочастотного фильтра (15).
Трехфазный мостовой реверсивный выпрямитель (8) выполнен по известной схеме [Завалишин Д.А. Ионный преобразователь частоты для регулирования скорости асинхронного двигателя // Электричество. - 1939. - № 4], содержащей шесть пар встречно-параллельно включенных тиристоров (9, 10, 11, 12, 13, 14) или шесть симметричных тиристоров (симисторов). Параллельно выходу трехфазного мостового реверсивного выпрямителя (8) соединен конденсатор низкочастотного фильтра (15), вывод которого соединены с выходами 1 и 2 непосредственного преобразователя частоты (4). Вторые выходы непосредственных преобразователей частоты (4, 5, 6) соединены между собой и соединены с выходом 1 непосредственного преобразователя частоты (7), выход 2 которого соединен с нулевым проводом нагрузки (N). Первые выходы непосредственных преобразователей частоты (4, 5, 6) соединены с соответствующими входами трехфазной нагрузки системы генерирования.
Предлагаемая система функционирует следующим образом.
В соответствии с ГОСТ 19880-74 коэффициент мощности определяется как отношение активной мощности к полной мощности, пренебрегая активными потерями в статическом преобразователе электрической энергии и полагая, что нагрузка симметрична, выражение для входного коэффициента мощности СПЭЭ примет вид
где: Eн(1), Iн(1) - действующее значение основных гармоник фазного напряжения и тока в нагрузке;
н(1) - фазовый сдвиг между током и напряжением нагрузки;
E1i, I1i - действующие значения фазных напряжений и токов синхронного генератора.
Напряжения на нагрузке в соответствии с фиг.1 будут определяться с помощью следующих соотношений:
uнj=uнoj+uoo4, j=1, 2, 3,
где uнo1, uнo2, uнo3 , uoo4 - выходные напряжения непосредственных преобразователей частоты НПЧ1, НПЧ2, НПЧ3 и НПЧ 4.
Математически характер изменения углов управления для трех непосредственных преобразователей частоты НПЧ1, НПЧ2 и НПЧ3 обозначим следующим образом midl1,2,3 (
2t) и определим его в виде соотношения
где: - закон изменения углов управления непосредственных преобразователей частоты НПЧ1, НПЧ2 и НПЧ 3 при синусоидальном законе управления;
midl(
2)=Midl{
1(
2),
2(
2),
3(
2) - комбинированная добавка, характер изменения во времени иллюстрируется фиг.2;
M - глубина модуляции углов управления.
Характер изменения во времени углов управления sinl(
2t) и
midl1(
2t) показан на фиг.3. Такой способ формирования углов управления
midlj(
2t) позволяет расширить линейный диапазон изменения углов управления
sinj(
2t) в
раза [Берестов В.М., Харитонов С.А. Анализ синусоидальной ШИМ с натуральной выборкой (методический аспект). Технiчна електродинамiка. Тематический выпуск. Силова електронiка та енергоефективнiсть. Частина 2. Киiв, 2002. - с.31-37]. Однако, как следует из фиг.2, в комбинированной добавке
присутствуют гармоники с частотами (6k-3)
2, где k=1, 2, 3
, которые приведут к появлению аналогичных составляющих в выходных напряжениях непосредственных преобразователей частоты НПЧ1, НПЧ2 и НПЧ3. Учитывая, что эти гармоники образуют в выходных напряжениях нулевую последовательность, они могут быть компенсированы путем добавления непосредственного преобразователя частоты НПЧ4 в нулевой провод нагрузки, как это показано на фиг.1, который генерирует напряжение u oo4, при этом закон управления для этого комплекта выбирается в виде
где (M) - функция, которая учитывает изменение коэффициента передачи непосредственных преобразователей частоты НПЧ1 , НПЧ2 и НПЧ3 по гармонике с частотой (6k-3)
2 в зависимости от глубины модуляции M. Так например, в случае линейной компенсации влияния глубины модуляции
(M)=1-0.13528·M. При таком управлении гармоники порядка (6k-3)
2 в нагрузке отсутствуют, но происходит увеличение основной гармоники напряжений на нагрузке по отношению к аналогичным напряжениям в системе прототипа, где изменение углов управления осуществляется в соответствии с соотношением
sinj(
2t).
Проведенный анализ показывает, что действующие значения основных гармоник напряжения на нагрузке можно оценить с помощью соотношений:
- для СПЭЭ прототипа;
- для СПЭЭ предлагаемой системы.
На фиг.4 показано как изменяется отношение в функции глубины модуляции {М}, откуда следует, что в предложенной системе действующее значение основной гармоники напряжения на нагрузке увеличивается на 8.5÷14.5%. В соответствии с соотношением (1) настолько же процентов происходит увеличение входного коэффициента мощности статического преобразователя электрической энергии ( сг) и на 7.8÷12.7% уменьшается установленная мощность (Sсг) и масса синхронного генератора.
Снижение массы синхронного генератора является весьма важным фактором, т.к. СГ консольно подключен к маршевому авиационному двигателю. Введение дополнительного вентильного комплекта ВК 4 незначительно увеличит массу системы генерирования, т.к. при симметричной нагрузке ток основной гармоники будет равен нулю, а высокочастотные токи будут значительно подавлены с помощью индуктивностей рассеяния трансформатора TP (3) или специально установленных дросселей в выходные фазы ТР.
Таким образом, предложенная система генерирования электрической энергии трехфазного переменного тока имеет меньшую массу синхронного генератора за счет повышения входного коэффициента мощности статического преобразователя электрической энергии.
Класс H02J3/02 с использованием одной сети для одновременного распределения электрической энергии на различных частотах; с использованием одной сети для одновременного распределения электрической энергии переменного и постоянного тока
Класс H02P9/00 Устройства для управления электрическими генераторами с целью получения требуемого значения выходных параметров