цифровой измерительный преобразователь индуктивного типа с повышенным быстродействием

Классы МПК:G01R27/02 для измерения активного, реактивного и полного сопротивления или других производных от них характеристик, двухполюсника, например постоянной времени
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)
Приоритеты:
подача заявки:
2012-12-14
публикация патента:

Изобретение относится к измерительной технике. Цифровой измерительный преобразователь индуктивного типа, включающий в себя микроконтроллер, подключенный к блоку формирования импульсов, выход которого подключен к входам усилителей тока измерительного и опорного плеч преобразователя, выходы усилителей подключены к LC-контурам измерительного и опорного плеч преобразователя. При этом LC-контуры измерительного и опорного плеч преобразователя подключены к первым входам компараторов обоих плеч соответственно, вторые входы которых соединены с общей шиной, выходы компараторов подключены к цифровым входам микроконтроллера. Технический результат заключается в повышении быстродействия измерительного преобразователя. 2 ил. цифровой измерительный преобразователь индуктивного типа с повышенным   быстродействием, патент № 2521761

цифровой измерительный преобразователь индуктивного типа с повышенным   быстродействием, патент № 2521761 цифровой измерительный преобразователь индуктивного типа с повышенным   быстродействием, патент № 2521761

Формула изобретения

Цифровой измерительный преобразователь индуктивного типа, включающий в себя микроконтроллер, подключенный к блоку формирования импульсов, выход которого подключен к входам усилителей тока измерительного и опорного плеч преобразователя, выходы усилителей подключены к LC-контурам измерительного и опорного плеч преобразователя, отличающийся тем, что LC-контуры измерительного и опорного плеч преобразователя подключены к первым входам компараторов обоих плеч соответственно, вторые входы которых соединены с общей шиной, выходы компараторов подключены к цифровым входам микроконтроллера.

Описание изобретения к патенту

Изобретение относится к измерительной технике и может быть использовано в системах контроля технологических процессов, осуществляющих измерения механических и магнитных величин с помощью датчиков индуктивного типа.

В настоящее время промышленностью выпускается множество датчиков со встроенным микроконтроллером, которые называются «умными» датчиками (Джексон Р.Г. Новейшие датчики. - М.: Техносфера, 2007). В таких датчиках микроконтроллер в измерительной цепи обычно находится после блока предварительной аналоговой обработки сигнала и аналого-цифрового преобразователя. Он осуществляет линеаризацию передаточной функции, компенсирует влияние дестабилизирующих факторов и т.д. Наличие аналогового блока между первичным преобразователем и микроконтроллером может вызвать дополнительную погрешность измерений. Подключение микроконтроллера непосредственно к выходу первичного преобразователя и оцифровка сигнала на ранней стадии его обработки позволяет уменьшить погрешность аналогового блока или скомпенсировать ее, используя для этого цифровые методы.

Наиболее близким по технической сущности к заявляемому изобретению является выбранный в качестве прототипа цифровой преобразователь параметров датчиков индуктивного типа (патент РФ № 2421741, БИ № 17, 2011). Данный преобразователь содержит блок формирования импульсов, выход которого подключен к входам усилителей тока измерительного и опорного плеч устройства, а выходы усилителей подключены к LC-контурам чувствительных элементов измерительного и опорного плеч и к входам первого и второго аналого-цифровых преобразователей микроконтроллера. Для преобразования частоты колебаний в выходной сигнал использован микроконтроллер, преобразующий переменное напряжение на LC-контуре чувствительного элемента в цифровой код, с последующим вычислением спектра и определением частоты основной гармоники.

Недостатком прототипа является то, что для формирования выборки из оцифрованных значений переменного напряжения и последующего вычисления его спектра необходимо произвести N аналого-цифровых преобразований напряжения (N - объем выборки), продолжительность которых составляет существенную часть от общего времени однократного измерения.

Технический результат заявляемого изобретения состоит в сокращении времени аналого-цифрового преобразования напряжения на LC-контуре чувствительного элемента и повышении быстродействия измерительного преобразователя.

Технический результат достигается тем, что, измерительный преобразователь содержит блок формирования импульсов; усилители тока измерительного и опорного плеч преобразователя, выходы которых подключены к чувствительным элементам измерительного и опорного плеч преобразователя; микроконтроллер, осуществляющий аналого-цифровое преобразование напряжения и вычисление частоты основной гармоники.

Сущность изобретения поясняется чертежами, где на фиг.1 представлены диаграммы напряжений и спектры сигналов, а на фиг.2 - структурная схема преобразователя. В отличие от прототипа напряжение U1 с LC-контура чувствительного элемента преобразователя (фиг.1а) поступает в микроконтроллер не непосредственно, а через компаратор, преобразующий колебательный процесс в LC-контуре в периодический цифровой сигнал U2 (фиг.1б), представляющий собой чередующиеся высокий и низкий логические уровни. Поступающие в микроконтроллер сигналы с обоих плеч преобразователя оцифровываются через равные промежутки времени путем опроса состояния соответствующих выводов микроконтроллера без участия встроенных в него аналого-цифровых преобразователей. Это существенно сокращает процедуру преобразования напряжения в цифровой код и формирования выборки из результатов аналого-цифрового преобразования. Сформированная таким образом выборка, элементы которой имеют только два значения - ноль или один, подвергается дискретному преобразованию Фурье и затем вычисляется частота основной гармоники, однозначно связанная с индуктивностью преобразователя. На фиг.1в изображена зависимость спектральной плотности S 2 цифрового сигнала от частоты. Значения частот основных гармоник цифрового сигнала U2 и исходного сигнала U1, спектральная плотность S1 которого показана на фиг.1г, совпадают.

Блок формирования импульсов 1 реализован на микроконтроллере. Выход блока 1 подключен к входам усилителей 2 и 3 тока; выходы усилителей 2 и 3 тока подключены соответственно к LC-контурам чувствительных элементов 4 и 5, а также к входам компараторов 6 и 7; выходы компараторов 6 и 7 подключены к выводам микроконтроллера 8.

Заявляемое изобретение, как и прототип, использует одинаковый принцип действия, основанный на возбуждении кратковременным импульсом тока колебательных процессов в измерительном и опорном плечах устройства и преобразовании разности частот основных гармоник в выходной сигнал преобразователя. В отличие от прототипа LC-контуры измерительного и опорного плеч преобразователя подключают к первым входам компараторов 6 и 7 обоих плеч соответственно, вторые входы которых соединяют с общей шиной, выходы компараторов 6 и 7 подключают к выводам микроконтроллера 8, который, периодически опрашивая состояния этих выводов, преобразует напряжения с выходов обоих компараторов 6 и 7 в цифровой код, формирует выборку из оцифрованных таким образом значений и вычисляет частоты основных гармоник напряжений на LC-контурах измерительного и опорного плеч, однозначно связанные с параметрами преобразователя.

Преобразователь функционирует следующим образом. Электрический импульс с выхода блока 1 формирования импульсов, пройдя через усилитель 2 тока, возбуждает в измерительном плече преобразователя колебательный процесс, напряжение U1 которого представлено на фиг.1а, его частота зависит от индуктивности измерительной катушки преобразователя, изменяющейся под воздействием измеряемой физической величины. Такой же импульс с выхода усилителя 3 тока возбуждает в опорном плече преобразователя аналогичный колебательный процесс, частота которого фиксирована. Напряжение U1 подают на первый вход компаратора 6, второй вход которого подключат к общей шине, в результате на выходе компаратора 6 возникает напряжение U 2, показанное на фиг.1б. Аналогичное по форме напряжение возникает на выходе компаратора 7. Напряжения с выходов компараторов 6 и 7 поступают на цифровые входы микроконтроллера 8, который, периодически опрашивая состояния этих выводов, преобразует цифровые сигналы с выходов компараторов в код и формирует две выборки из результатов преобразований для измерительного и опорного плеч преобразователя. Затем микроконтроллер производит Фурье-преобразование и вычисляет спектры цифрового сигнала (фиг.1в) для измерительного и опорного плеч преобразователя. После этого процесс преобразования измеряемой физической величины, начинающийся с генерации электрического импульса с выхода блока 1 формирования импульсов, повторяется.

Класс G01R27/02 для измерения активного, реактивного и полного сопротивления или других производных от них характеристик, двухполюсника, например постоянной времени

устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов -  патент 2528588 (20.09.2014)
способ определения первичных параметров однородного участка трехпроводной линии электропередачи -  патент 2522836 (20.07.2014)
способ определения первичных и обобщенных вторичных параметров однородного участка трехпроводной линии электропередачи методом восьмиполюсника -  патент 2522829 (20.07.2014)
способ определения укрупненных вторичных параметров трехпроводной линии электропередачи методом восьмиполюсника -  патент 2521784 (10.07.2014)
способ определения укрупненных первичных параметров трехпроводной линии электропередачи -  патент 2518576 (10.06.2014)
способ для измерения импеданса во многих точках объекта и устройство для его осуществления -  патент 2510032 (20.03.2014)
цифровой способ преобразования параметров индуктивных датчиков с использованием временной инверсии сигнала -  патент 2507522 (20.02.2014)
микроконтроллерный измерительный преобразователь с уравновешиванием резистивного моста -  патент 2506599 (10.02.2014)
устройство для измерения сопротивления электрической изоляции -  патент 2501027 (10.12.2013)
измеритель параметров двухполюсных rlc цепей -  патент 2499269 (20.11.2013)
Наверх