композиция для изготовления жаростойких композитов

Классы МПК:C04B28/34 содержащие низкотемпературные фосфатные связующие
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) (RU)
Приоритеты:
подача заявки:
2013-01-09
публикация патента:

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Технический результат - повышение предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3 PO4, дополнительно содержит шлак от выплавки безуглеродистого феррохрома с содержанием, мас.%: SiO2 - 5,8; Al 2O3 - 54,8; Fe2O3 - 1,88; СаО - 13,2; MgO - 14,8; Cr2O3 - 5,4; R 2O - 2,3, при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, ортофосфорная кислота H3PO4 10-15, шлак от выплавки безуглеродистого феррохрома 24-30. 4 табл.

Формула изобретения

Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3 PO4, отличающаяся тем, что она дополнительно содержит шлак от выплавки безуглеродистого феррохрома с содержанием, мас.%: SiO2 - 5,8; Al2O3 - 54,8; Fe 2O3 - 1,88; СаО - 13,2; MgO - 14,8; Cr2 O3 - 5,4; R2O - 2,3 при следующем соотношении компонентов, мас.%:

отработанный катализатор ИМ-2201 10-15
щебень 33-40
песок 10-13
ортофосфорная кислота (H 3PO4)10-15
шлак от выплавки безуглеродистого феррохрома композиция для изготовления жаростойких композитов, патент № 2521980
с содержанием, мас.%: SiO 2 - 5,8; Al2O3 - 54,8; композиция для изготовления жаростойких композитов, патент № 2521980
Fe2O3 - 1,88; СаО - 13,2; MgO - 14,8;композиция для изготовления жаростойких композитов, патент № 2521980
Cr2O3 - 5,4; R2O - 2,324-30

Описание изобретения к патенту

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химически связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.

Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас. %: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 /патент Российской Федерации № 2440312, МПК С04В 14/24. Композиция для производства пористого заполнителя/ Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П.Королева, № 2010122114, заявл. 31.05.20910, опубл. 20.01.2012, бюл. № 2/[1].

Недостатком указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.

Наиболее близкой к изобретению является композиция для получения жаростойких композитов, включающая следующие компоненты, мас. %: глиноземсодержащий шлам - 10,5-10,53 (220 кг/м3 ); отработанный катализатор ИМ-2201 - 10,5-10,53 (220 кг/м 3); щебень - 35,88-35,89 (750 кг/м3); песок - 30,62-30,63 (640 кг/м3); Н3РO4 - 12,44-12,45 (260 кг/м3) /Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих/ А.И.Хлыстов, С.В.Соколова, А.В.Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - № 9. - С.38-42/[2].

Недостатком указанного состава керамической массы является относительно низкий предел прочности при сжатии после твердения и нагревания до температуры 1200°С и низкая термостойкость.

Сущность изобретения - повышение качества жаростойкого композита.

Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов.

Указанный технический результат достигается тем, что в известную композицию, включающую отработанный катализатор ИМ-2201, щебень, песок и Н3РO4, дополнительно вводят шлаки от выплавки безуглеродистого феррохрома с содержанием, мас.%: SiO2 - 5,8; АlО3 - 54,8; Fе2 О3 - 1,88; CaO - 13,82; MgO - 14,8; Сr2 О3 - 5,4; R2O - 2,3 при следующем соотношении компонентов, мас.%:

отработанный катализатор ИМ-2201 10-15
щебень 33-40
песок 10-13
Н3РO4 10-15
шлаки от выплавки безуглеродистого феррохрома композиция для изготовления жаростойких композитов, патент № 2521980
с содержанием, мас.%: SiO 2 - 5,8; Аl2О3 - 54,8; композиция для изготовления жаростойких композитов, патент № 2521980
Fe2O3 - 1,88; CaO - 13,82; MgO - 14,8;композиция для изготовления жаростойких композитов, патент № 2521980
Сr2О3 - 5,4; R2O - 2,324-30

Шлаки от выплавки безуглеродистого феррохрома представляют собой материал плотной порфировидной структуры красно-бурого цвета с вкраплениями шпинели. Порфировидная структура (т.е. структура, похожая на порфировую) является разновидностью зернисто-кристаллической структуры. Порода с такой структурой содержит вкрапленники больших размеров и имеет окружающую их основную массу зернисто-кристаллическую. Это напоминает сильно увеличенную порфировую структуру с вкрапленниками. Химический оксидный состав шлаков представлен в таблице 1, а поэлементный в таблице 2.

Таблица 1
Химические составы алюмосодержащих отходов производств
Компонент Содержание оксидов, мас.%
SiO 2Аl2O3 Fe2OCaO MgOСr2O 3R2O П.п.п.
1. Шлаки от выплавки безуглеродистого феррохрома5,8 54,81,8813,82 14,85,4 2,3-
2. Отработанный катализатор ИМ-22017,90 74,50,15 -0,1014,8 1,57-

Таблица 2
Поэлементный химический состав компонентов
КомпонентКонцентрация, мас.%
OAl MgNaCa FeSiCr
1. Шлаки от выплавки безуглеродистого феррохрома50,42 19,268,21,3 7,30,52 6,86,2
2. Катализатор

ИМ-2201
60,74 26,58- 2,81-- 2,828,1

Фазовый состав шлаков представлен алюминатами состава СаО·Аl 2О3 и алюмомагнезиальной хромосодержащей шпинелью. В системе CaO-Аl2O3 известны соединения 3СаО-Аl2О3, 12СаО·7Аl2O 3, СаО-Аl2О3, СаО-2Аl2 O3, СаО-6Аl2O3. Реакция образования алюминатов кальция в системе CaO-Аl2O3 протекает в основном в твердой фазе. При обжиге смеси CaO и Аl 2O3 состава 1:1 до температуры 900°С образуется СаО·Аl2О3 в результате диффузии ионов Са2+ в решетку кристаллов Аl2O3 . При 950°С наряду с увеличением количества СаО·Аl 2О3 наблюдается появление 12СаО·7Аl 2O3, что объясняется диффузией ионов Са 2+ через слой СаО-Аl2О3. В интервале температур 1000-1100°С вследствие диффузии ионов Аl 3+ через слой СаО-Аl2O3 появляется новое соединение СаО-2Аl2О3, а в интервале температур 1100-1200° СаО-3СаО-Аl2О3 , образующий на границе фаз СаО/12СаО·7Аl2O 3. Образование этой фазы вызывается диффузией ионов Са 2+ в решетку 12СаO·7Аl2O3.

Огнеупорность шлаков - 1580-1620°С, температура деформации под нагрузкой 0,2 МПа: начало размягчения - 1280-1300°С, разрушения 1500-1550°С.

В качестве фосфатных связующих использовалась ортофосфорная кислота Н3РO 4 в чистом виде, но можно использовать однозамещенный фосфорнокислый алюминий Аl(Н2РO4)3, двухзамещенный фосфорнокислый алюминий Al2(H2PO4 )3, хромалюминий фосфорнокислый или алюмохромофосфатное связующее (АХФС) с общей формулой CrnAl4-n (H2PO4)2, где=1, 2, 3.

Сведения, подтверждающие возможность осуществления изобретения. Технологический процесс производства бесцементных жаростойких бетонов и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.

Следует отметить, что для своего затвердения и набора марочной прочности жаростойкие бетоны требуют особую термообработку.

Для бетонов на ортофосфорной кислоте с компонентами, представленными в таблице 3, - нагревание до 500°С с подъемом температуры до 200°С со скоростью 60°С/час и до 500°С-150°С/час, выдерживание в течение 4 часов, охлаждение вместе с печью.

Таблица 3
Составы для получения жаростойких бетонов
КомпонентыСодержание компонентов, мас.%
1 23
Отработанный катализатор ИМ-220110 1215
Щебень4038 33
Песок 1011 13
Н3РO4 1012 15
Шлаки от выплавки безуглеродистого феррохрома3027 24

В таблице 4 представлены физико-механические показатели жаростойкого бетона.

Таблица 4
Физико-механические показатели жаростойкого бетона, после твердения и нагревания до температуры 1200°С
ПоказателиСоставы Прототип
1 23
Термостойкость, °С3032 3829
Механическая прочность на сжатие, МПа 4852 5446

Как видно из таблицы 4, жаростойкий бетон из предложенных составов имеет более высокие показатели по механической прочности и термостойкости, чем прототип.

Полученное техническое решение при использовании шлаков от выплавки безуглеродистого феррохрома позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона.

Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент Российской Федерации № 2440312, МПК С04В 14/24. Композиция для производства пористого заполнителя/ Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П.Королева. - № 2010122114, заявл. 31.05.20910, опубл. 20.01.2012, бюл. № 2.

2. Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих/ А.И.Хлыстов, С.В.Соколова, А.В.Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - № 9. - С.38-42.

Класс C04B28/34 содержащие низкотемпературные фосфатные связующие

композиция для получения термозащитного покрытия и термозащитное покрытие -  патент 2529525 (27.09.2014)
композиция для изготовления жаростойких композитов -  патент 2528643 (20.09.2014)
композиция для изготовления жаростойких композитов -  патент 2526090 (20.08.2014)
композиция для изготовления жаростойких композитов -  патент 2524155 (27.07.2014)
композиция для изготовления жаростойких композитов -  патент 2521244 (27.06.2014)
композиция для изготовления жаростойких композитов -  патент 2521005 (27.06.2014)
глинофосфатный материал -  патент 2485071 (20.06.2013)
теплоизолирующий и теплопроводный бетоны на алюмофосфатной связке (варианты) -  патент 2483038 (27.05.2013)
глинофосфатный материал -  патент 2480430 (27.04.2013)
глинофосфатный материал -  патент 2403220 (10.11.2010)
Наверх