способ и система автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителяx очистных сооружений объектов водоотведения жилищно-коммунального хозяйства

Классы МПК:G06Q50/06 электро-, газо- или водоснабжение
G01N27/02 измерением полного сопротивления материалов 
G01N33/00 Исследование или анализ материалов особыми способами, не отнесенными к группам  1/00
Автор(ы):, , , , , ,
Патентообладатель(и):Пильцов Сергей Сергеевич (RU),
Соколов Антон Геннадьевич (RU)
Приоритеты:
подача заявки:
2013-02-14
публикация патента:

Изобретение относится к способу и системе автоматизированного контроля процессов в первичных и вторичных отстойниках или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства. Технический результат заключается в повышении эффективности автоматизированного контроля отстойников сточных вод. Система содержит совокупность первичных преобразователей емкостного типа для измерения электрической емкости (диэлектрической проницаемости) и электрического сопротивления (удельной электропроводности), а также температуры, размещаемых на подвижном оборудовании, расположенном внутри отстойника, совокупность вторичных преобразователей, соединенных с первичными преобразователями, подающих на первичные преобразователи сигналы воздействия заданных частоты и амплитуды и получающих ответные мгновенные значение напряжения и тока первичных преобразователей для последующей обработки, программируемое устройство или автоматизированное рабочее место контроля, подключенное к вторичным преобразователям по проводному или беспроводному каналу связи, с функциями сбора, обработки и хранения информации, включая контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени или относительно конструкции отстойника и формирование итогового прогноза уровня или свойств для осадка или ила. 2 н. и 10 з.п. ф-лы, 1 ил. способ и система автоматизированного контроля процессов в первичных   отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителяx   очистных сооружений объектов водоотведения жилищно-коммунального   хозяйства, патент № 2522316

способ и система автоматизированного контроля процессов в первичных   отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителяx   очистных сооружений объектов водоотведения жилищно-коммунального   хозяйства, патент № 2522316

Формула изобретения

1. Способ автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства, включающий

непрерывное измерение диэлектрической проницаемости и удельной электропроводности, а также температуры в точках контроля, распределенных по высоте отстойника и размещаемых на подвижном оборудовании, расположенном внутри отстойника при перемещении подвижного оборудования;

приведение измеренных значений диэлектрической проницаемости и удельной электропроводности к температуре учета;

контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени и/или относительно базовой координаты конструкции отстойника;

итоговое прогнозирование общего уровня и/или свойств для осадка или ила в отстойнике с возможным выделением слоев и прогнозированием их уровня, а также итоговый расчет прогнозного значения влажности осадка или ила, исходя из измеренных значений диэлектрической проницаемости и удельной электропроводности, приведенных к температуре учета.

2. Способ по п.1, отличающийся тем, что по резкому увеличению значения диэлектрической проницаемости, а также скачкообразному росту значения удельной электропроводности определяют вхождение датчика в среду осадка первичного отстойника.

3. Способ по п.1, отличающийся тем, что по резкому уменьшению значения диэлектрической проницаемости, а также скачкообразному уменьшению значения удельной электропроводности определяют выход датчика из среды осадка первичного отстойника в водную среду.

4. Способ по п.1, отличающийся тем, что по длительному постепенному увеличению значений удельной электропроводности на всех уровнях отстойника определяют увеличение общей минерализации стоков, поступающих в первичный отстойник.

5. Способ по п.1, отличающийся тем, что по динамике изменений удельной электропроводности и диэлектрической проницаемости при перемещении подвижного оборудования выделяют зоны первичного отстойника с различными условиями осаждения осадка, преимущественно секторные зоны.

6. Способ по п.1, отличающийся тем, что по резкому уменьшению значения диэлектрической проницаемости, а также скачкообразному росту значения удельной электропроводности определяют вхождение датчика в среду вторичного отстойника и/или илоуплотнителя.

7. Способ по п.1, отличающийся тем, что по медленному увеличению диэлектрической проницаемости и удельной электропроводности определяют уплотнение ила и увеличение его концентрации.

8. Способ по п.1, отличающийся тем, что по длительному постепенному увеличению удельной электропроводности определяют общую минерализацию стоков, поступающих во вторичный отстойник и/или илоуплотнитель.

9. Способ по п.1, отличающийся тем, что по повышенной дисперсности измерений по удельной электропроводности и диэлектрической проницаемости определяют перемещение датчика в более плотных и неравномерных иловых средах.

10. Способ по п.1, отличающийся тем, что по динамике изменений удельной электропроводности и диэлектрической проницаемости при перемещении подвижного оборудования выделяют зоны с различными уровнями осаждения ила, преимущественно секторные зоны.

11. Способ по любому из пп.1-10, отличающийся тем, что упомянутые измерения выполняют при движении эстакады илоскреба по всей окружности отстойника.

12. Система автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства, включающая

совокупность первичных преобразователей емкостного типа для измерения электрической емкости (диэлектрической проницаемости) и электрического сопротивления (удельной электропроводности), а также температуры, размещаемых на подвижном оборудовании, расположенном внутри отстойника,

совокупность вторичных преобразователей, соединенных с первичными преобразователями, подающих на первичные преобразователи сигналы воздействия заданных частоты и амплитуды и получающие ответные мгновенные значение напряжения и тока первичных преобразователей для последующей обработки,

программируемое устройство и/или автоматизированное рабочее место контроля, подключенное к вторичным преобразователям по проводному и/или беспроводному каналу связи,

с функциями сбора, обработки и хранения информации, включая контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени и/или относительно конструкции отстойника и формирование итогового прогноза уровня и/или свойств для осадка и/или ила.

Описание изобретения к патенту

Предлагаемое изобретение относится к отрасли жилищно-коммунального хозяйства и направлено на дальнейшее совершенствование технологии очистки канализационных стоков с целью гарантированного обеспечения необходимого качества сбрасываемой воды и повышения эффективности технологического процесса очистки.

Широко известны технологии измерения качественных и количественных характеристик различных сред, основанные на измерении электрофизических параметров: диэлектрической проницаемости и удельной электропроводности. В частности, в патенте US 7624001, компании Canon КК, опубликованном 24.11.2009, описана технология контроля сточных вод, основанная на измерении диэлектрической проницаемости стока с дальнейшим анализом протекающих процессов в соответствии с математической моделью. Также, из патентной заявки JP 2002035791, компании Mitsui Eng., опубликованной 05.02.2002, известна технология контроля сточных вод, предусматривающая одновременный контроль нескольких параметров стока, включая диэлектрическую проницаемость и удельную электропроводность с дальнейшим использованием результатов измерений для контроля технологического процесса в отстойниках. В свою очередь, предлагаемое изобретение представляет собой дальнейшее совершенствование технологий контроля сточных вод, основанных на измерении электрофизических параметров - удельной электропроводности и диэлектрической проницаемости, и позволит предложить способ и систему для контроля отстойников сточных вод, которая даст возможность однозначного контроля процессов в отстойниках с прогнозированием их дальнейшего протекания.

Указанный технический результат достигается при использовании предложенных способа и системы автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства.

Способ автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства предусматривает непрерывное измерение диэлектрической проницаемости и удельной электропроводности, а также температуры в точках контроля, распределенных по высоте отстойника и размещаемых на подвижном оборудовании, расположенном внутри отстойника, при перемещении подвижного оборудования. Измеренные значения диэлектрической проницаемости и удельной электропроводности приводятся к температуре учета. Выполняют контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени и/или относительно базовой координаты конструкции отстойника. Далее, исходя из измеренных значений диэлектрической проницаемости и удельной электропроводности, приведенных к температуре учета, выполняют итоговое прогнозирование общего уровня и/или свойств для осадка или ила в отстойнике с возможным выделением слоев и прогнозированием их уровня, а также итоговый расчет прогнозного значения влажности осадка или ила. В большинстве случаев измерения выполняют при движении эстакады илоскреба по всей окружности отстойника.

Прогнозирование свойств или уровня для осадка или же ила отстойников может быть выполнено исходя из следующих условий:

- по резкому увеличению значения диэлектрической проницаемости, а также скачкообразному росту значения удельной электропроводности определяют вхождение датчика в среду осадка первичного отстойника;

- по резкому уменьшению значения диэлектрической проницаемости, а также скачкообразному уменьшению значения удельной электропроводности определяют выход датчика из среды осадка первичного отстойника в водную среду;

- по длительному постепенному увеличению значений удельной электропроводности на всех уровнях отстойника определяют увеличение общей минерализации стоков, поступающих в первичный отстойник;

- по динамике изменений удельной электропроводности и диэлектрической проницаемости при перемещении подвижного оборудования выделяют зоны первичного отстойника с различными условиями осаждения осадка, преимущественно секторные зоны;

- по резкому уменьшению значения диэлектрической проницаемости, а также скачкообразному росту значения удельной электропроводности определяют вхождение датчика в среду вторичного отстойника и/или илоуплотнителя;

- по медленному увеличению диэлектрической проницаемости и удельной электропроводности определяют уплотнение ила и увеличение его концентрации;

- по длительному постепенному увеличению удельной электропроводности определяют общую минерализацию стоков, поступающих во вторичный отстойник и/или илоуплотнитель;

- по повышенной дисперсности измерений по удельной электропроводности и диэлектрической проницаемости определяют перемещение датчика в более плотных и неравномерных иловых средах;

- по динамике изменений удельной электропроводности и диэлектрической проницаемости при перемещении подвижного оборудования выделяют зоны с различными уровнями осаждения ила, преимущественно секторные зоны.

Система автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства включает совокупность первичных преобразователей емкостного типа для измерения электрической емкости (диэлектрической проницаемости) и электрического сопротивления (удельной электропроводности), а также температуры, размещаемых на подвижном оборудовании, расположенном внутри отстойника. В большинстве случаев первичные преобразователи будут размещены на штанге, устанавливаемой на эстакаде илоскреба. С первичными преобразователями соединена совокупность вторичных преобразователей, подающих на первичные преобразователи сигналы воздействия заданных частоты и амплитуды и получающих ответные мгновенные значение напряжения и тока первичных преобразователей для последующей обработки. Также, предложенная система автоматизированного контроля включает программируемое устройство и/или автоматизированное рабочее место контроля, подключенное к вторичным преобразователям по проводному и/или беспроводному каналу связи. Программируемое устройство и/или автоматизированное рабочее место обеспечивает функции сбора, обработки и хранения информации, включая контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени и/или относительно конструкции отстойника, и формирование итогового прогноза уровня и/или свойств для осадка и/или ила. Программируемое устройство и/или автоматизированное рабочее место контроля может быть подключено к системе оперативного диспетчерского управления очистными сооружениями. В большинстве случаев программируемое устройство контроля размещено на штанге, устанавливаемой на эстакаде илоскреба в корпусе блока вторичных преобразователей.

Первичные преобразователи 1 емкостного типа обеспечивают измерение электрической емкости (диэлектрической проницаемости), электрического сопротивления (удельной электропроводности), а также температуры. Первичные преобразователи 1 размещаются в первичном отстойнике, вторичном отстойнике и илоуплотнителе очистного сооружения объекта водоотведения жилищно-коммунального хозяйства. Первичные преобразователи 1 располагаются на каком-либо подвижном оборудовании, расположенном внутри отстойника, в настоящее время таким подвижным оборудованием будет штанга 2, устанавливаемая на эстакаде вращающегося илоскреба 3. К первичным преобразователям 1 подключена совокупность (блок) вторичных преобразователей 4, которые обеспечивают подачу на первичные преобразователи 1 сигналов воздействия заданных частоты и амплитуды.

В ответ вторичные преобразователи 4 получают мгновенные значения напряжения и тока первичных преобразователей 1 для последующей регистрации и обработки. Блок вторичных преобразователей и регистрации 4 подключен к программируемому устройству и/или автоматизированному рабочему месту контроля 5. Для связи между блоком вторичных преобразователей 4 и программируемым устройством и/или автоматизированным рабочим местом контроля 5 может быть использован проводной или же беспроводной канал связи. В настоящее время программируемое устройство контроля 5 будет размещено на штанге, устанавливаемой на эстакаде илоскреба в корпусе блока вторичных преобразователей 4. В свою очередь, программируемое устройство и/или автоматизированное рабочее место контроля 5 может быть подключено к системе оперативного диспетчерского управления очистными сооружениями 6.

Программируемое устройство и/или автоматизированное рабочее место 5 обеспечивает функции сбора, обработки и хранения информации, включая контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени и/или относительно базовой координаты конструкции отстойника, и формирование итогового прогноза уровня и/или свойств для осадка и/или ила. Программируемое устройство и/или автоматизированное рабочее место контроля 5 представляют собой аппаратно-программный комплекс, конкретная архитектура которого выбирается исходя из характеристик очистного сооружения. При работе системы программируемое устройство и/или автоматизированное рабочее место контроля 5 для каждого из уровней контроля электрофизических параметров по массивам полученных данных рассчитывает значения электрического сопротивления и электрической емкости, которые далее пересчитываются в удельные показатели: удельную электропроводность и диэлектрическую проницаемость соответственно.

Далее рассчитанные значения удельной электропроводности и диэлектрической проницаемости приводятся к единым условиям по температуре. Программируемое устройство и/или автоматизированное рабочее место контроля 5 выполняет выделение событий резкого изменения во времени диэлектрической проницаемости и удельной электропроводности среды на уровне каждого датчика, выделение участков динамического роста и снижения диэлектрической проницаемости и удельной электропроводности, последующей автоматической интерпретации выявленных событий. Выполняется сводный анализ событий и определение прогнозного значения уровня осадка и/или ила по известным уровням расположения датчиков, выполняется выделение слоев в осадке и определение их уровней по известным уровням расположения датчиков.

В итоге, программируемое устройство и/или автоматизированное рабочее место контроля 5 выполняет расчет прогнозного значения влажности осадка по измеренным значениям диэлектрической проницаемости и удельной электропроводности и установленным эмпирическим формулам, а также выполняет функции накопления и архивирования результатов контроля и при необходимости их визуализации.

Предложенный способ автоматизированного контроля процессов в отстойниках очистных сооружений осуществляется следующим образом.

На первичном отстойнике осуществляется осаждение взвешенных веществ и отделение всплывающих жировых загрязнений из поступающих стоков. Загрязнения, имеющие более высокую плотность, осаждаются на дно первичного отстойника и периодически откачиваются с целью дальнейшей утилизации. Очищенные от взвешенных веществ и жировых загрязнений стоки поступают в аэротенки на следующий технологический этап очистки. По измеряемому уровню и влажности осадка корректируется график откачки отстойников. Осадок может расслаиваться, образуя на различных уровнях плотные образования, которые при традиционных способах измерения могут существенно искажать результат. Количество и качественные характеристики поступающих стоков влияют на влажность осадка и степень очистки среды, поступающей на дальнейший этап очистки.

Во вторичном отстойнике осуществляется разделение иловой смеси, поступающей из аэротенков после биологической очистки, на активный ил и очищенную воду. Количество поступающей иловой смеси определяется количеством поступающих на очистные сооружения стоков. Концентрация ила определяется пропорцией количества стоков, поступающих в первичные отстойники, и количества активного ила, подаваемого в аэротенки. Поскольку количество активного ила является величиной условно постоянной, концентрация ила с ростом входного потока падает. При этом уменьшается также время пребывания иловой смеси в отстойнике и, как следствие, снижаются возможности его осаждения, снижается плотность ила в нижних слоях отстойника. Осаждаемый активный ил непрерывно отводится в приемный резервуар активного ила и далее насосами - на вход аэротенков, а частично как избыточный ил в илоуплотнители. Влажность ила в нижних уровнях отстойника, как правило, не ниже 99,5%. В настоящее время эксплуатационные режимы очистных сооружений зачастую вызывают рост илового индекса, характеризующего неспособность к оседанию. В свою очередь, это приводит к отсутствию резких границ между средами, большим динамическим колебаниям по уровню и концентрации ила и, как следствие, снижению эффективности и качества очистки.

Соответственно, требуется регулирование работы отстойников исходя из описанной выше модели работы очистных сооружений, при котором выполняют непрерывное измерение диэлектрической проницаемости и удельной электропроводности, а также температуры в точках контроля, распределенных по высоте отстойника и размещаемых на подвижном оборудовании, расположенном внутри отстойника при перемещении подвижного оборудования. В настоящее время измерения будут проводится при движении эстакады илоскреба по всей окружности отстойника. Измеренные значения диэлектрической проницаемости и удельной электропроводности приводятся к температуре учета. Выполняют контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени и/или относительно конструкции отстойника. Далее, исходя из измеренных значений диэлектрической проницаемости и удельной электропроводности, приведенных к температуре учета, выполняют итоговое прогнозирование уровня и/или свойств для осадка и/или ила в отстойнике с возможным выделением слоев и прогнозированием их уровня, а также итоговый расчет прогнозного значения влажности.

Прогнозирование свойств или уровня для осадка или же ила отстойников может быть выполнено исходя из следующих условий:

- по резкому увеличению значения диэлектрической проницаемости, а также скачкообразному росту значения удельной электропроводности определяют вхождение датчика в среду осадка первичного отстойника;

- по резкому уменьшению значения диэлектрической проницаемости, а также скачкообразному уменьшению значения удельной электропроводности определяют выход датчика из среды осадка первичного отстойника в водную среду;

- по длительному постепенному увеличению значений удельной электропроводности на всех уровнях отстойника определяют увеличение общей минерализации стоков, поступающих в первичный отстойник;

- по динамике изменений удельной электропроводности и диэлектрической проницаемости при перемещении подвижного оборудования (обороту илоскреба) выделяют зоны первичного отстойника с различными условиями осаждения осадка, преимущественно секторные зоны;

- по резкому уменьшению значения диэлектрической проницаемости, а также скачкообразному росту значения удельной электропроводности определяют вхождение датчика в среду вторичного отстойника и/или илоуплотнителя;

- по медленному увеличению диэлектрической проницаемости и удельной электропроводности определяют уплотнение ила и увеличение его концентрации;

- по длительному постепенному увеличению удельной электропроводности определяют общую минерализацию стоков, поступающих во вторичный отстойник и/или илоуплотнитель;

- по повышенной дисперсности измерений по удельной электропроводности и диэлектрической проницаемости определяют перемещение датчика в более плотных и неравномерных иловых средах;

- по динамике изменений удельной электропроводности и диэлектрической проницаемости при перемещении подвижного оборудования (обороту илоскреба) выделяют зоны с различными уровнями осаждения ила, преимущественно секторные зоны.

Таким образом, предложены способ и система автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства, которые обеспечат достоверный и бесперебойный контроль технологического процесса в отстойниках.

Класс G06Q50/06 электро-, газо- или водоснабжение

Класс G01N27/02 измерением полного сопротивления материалов 

способ определения концентрации компонентов смеси высокоразбавленных сильных электролитов -  патент 2506577 (10.02.2014)
способ определения остаточной водонасыщенности и других форм связанной воды в материале керна -  патент 2502991 (27.12.2013)
устройство для измерения удельной электропроводности пластичного вещества -  патент 2498283 (10.11.2013)
способ определения содержания водорода в титане -  патент 2498282 (10.11.2013)
способ определения электрических характеристик и/или идентификации биологических объектов и устройство для его осуществления -  патент 2488104 (20.07.2013)
устройство для измерения объемной концентрации пузырьков газа в жидкости -  патент 2485489 (20.06.2013)
трехэлектродный датчик -  патент 2482469 (20.05.2013)
способ селективного определения концентрации аммиака и его производных в газовой среде -  патент 2473893 (27.01.2013)
способ определения электрофизического параметра порошкообразных материалов и устройство, его осуществляющее -  патент 2467319 (20.11.2012)
сборка и использование rfid-датчиков в контейнерах -  патент 2457472 (27.07.2012)

Класс G01N33/00 Исследование или анализ материалов особыми способами, не отнесенными к группам  1/00

способ технологической оценки технических сортов винограда -  патент 2529839 (27.09.2014)
способ определения подлинности и количественного содержания бензэтония хлорида в лекарственных препаратах -  патент 2529814 (27.09.2014)
раковый маркер и терапевтическая мишень -  патент 2529797 (27.09.2014)
способ диагностики поражения вегетативных парасимпатических узлов головы вирусной этиологии -  патент 2529795 (27.09.2014)
способ диагностики поражения вегетативных парасимпатических узлов головы вирусной этиологии -  патент 2529794 (27.09.2014)
способ оценки острой соматической боли -  патент 2529793 (27.09.2014)
способ оценки эффективности противогерпетического действия фотодинамического воздействия на вирус простого герпеса (впг) in vitro -  патент 2529792 (27.09.2014)
способ выбора лечения акне у женщин -  патент 2529789 (27.09.2014)
способ прогнозирования самопроизвольного выкидыша -  патент 2529788 (27.09.2014)
технология определения анеуплоидии методом секвенирования -  патент 2529784 (27.09.2014)
Наверх