способ формирования микроструктурированного слоя нитрида титана
Классы МПК: | C23C8/36 с использованием ионизированных газов, например ионоазотирование C23C14/28 с использованием волновой энергии или облучения частицами |
Автор(ы): | Абрамов Дмитрий Владимирович (RU), Кочуев Дмитрий Андреевич (RU), Маков Степан Андреевич (RU), Прокошев Валерий Григорьевич (RU), Хорьков Кирилл Сергеевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) (RU) |
Приоритеты: |
подача заявки:
2013-01-15 публикация патента:
20.07.2014 |
Изобретение относится к способу формирования микроструктурированного слоя нитрида титана. Формирование микроструктурированного слоя нитрида титана осуществляют путем воздействия на титановую подложку фемтосекундным лазерным излучением с энергией в импульсе порядка 100 мкДж и с плотностью мощности в импульсе порядка 1013 Вт/см2 в среде жидкого азота. Обеспечиваются износостойкие и коррозионно-стойкие покрытия на изделиях из титана и его сплавов, а также улучшаются антифрикционные свойства их поверхностей. 2 ил.
Формула изобретения
Способ формирования микроструктурированного слоя нитрида титана на титановой подложке, характеризующийся тем, что на титановую подложку воздействуют фемтосекундным лазерным излучением с энергией в импульсе порядка 100 мкДж и с плотностью мощности в импульсе порядка 1013 Вт/см2 в среде жидкого азота.
Описание изобретения к патенту
Изобретение относится к способам нанесения покрытий и может быть использовано для получения износостойких и коррозионно-стойких покрытий на изделиях из титана и его сплавов, а также улучшения антифрикционных свойств их поверхности.
Известен способ получения покрытия из нитрида титана на деталях, включающий обработку в азотной плазме при воздействии миллисекундного луча лазера и давлении 40-80 атм, что обеспечивает плотность азотной плазы 5·10 Вт/см2, при этом в зону ее воздействия помещают титановую подложку и обрабатываемую деталь, на которую подают постоянное положительное напряжение величиной 100-180 В (см. Авторское свидетельство СССР № 1067859, МПК 7 С23С 8/36, опубл. 27.07.2005). Данный способ позволяет наносить слой нитрида титана на любые проводящие материалы, но для обработки изделий из титана и его сплавов он излишне сложен.
Известен способ формирования защитного покрытия поверхности пластин из титана и титановых сплавов, где слой нитрида титана формируется за счет нагрева малой области поверхности пластины излучением СО2 лазера с интенсивностью около 2·10 4 Вт/см2 в среде газообразного азота до температуры, не превышающей порог плавления материала (см. US 4434189, МПК 3 B05D 3/06, С23С 13/08, В05В 5/00, 1984). В рассматриваемом способе атомы азота диффундируют в нагретый материал из газовой фазы. Диффузионные процессы являются достаточно медленными. При реализации способа неизбежен глубокий прогрев обрабатываемого материала с последующим медленным остыванием. Это приводит к отпуску материала, что накладывает ограничения на обработку готовых изделий, так как возможно изменение их механических свойств. Кроме того, способ предполагает естественное формирование поверхности покрытия без ее принудительного структурирования.
Наиболее близок к заявляемому способ упрочнения азотированием поверхности подложки из титанового сплава, где слой нитрида титана формируется за счет нагрева малой области поверхности титана лазерным излучением до температуры плавления в среде газообразного азота, а в качестве источника излучения предлагается СО2 , YAG или эксимерные лазеры (см. US 5290368, МПК 5 С22С 14/00, 1994). Способ предусматривает нагрев обрабатываемой поверхности до температур более высоких, чем в предыдущем, что увеличивает скорость диффузии азота в основной материал. Однако обеспечивается это за счет использования лазерного излучения с высокой средней энергией. В результате процесс формирования слоя нитрида остается достаточно медленным и сопровождается сильным прогревом основного материала. Кроме того, способ не предполагает микроструктурирования нитрида титана. Таким образом, рассмотренный способ, несмотря на близость к заявляемому, нельзя рассматривать как прототип.
Не обнаружено прототипа и среди способов получения непосредственно микроструктурированного нитрида титана, так как все они предполагают получение порошков, а не сплошных слоев на исходном материале.
Техническим результатом заявляемого изобретения является получение на поверхности титана или его сплава сплошного слоя TIN, на поверхности которого сформирована упорядоченная система микроструктур. Высокая твердость и устойчивость к агрессивным средам нитрида титана определяет увеличения износостойкости и коррозионной стойкости обработанной поверхности, а структурирование сформированного слоя улучшает ее антифрикционные свойства, так как уменьшает площадь контакта.
Технический результат достигается тем, что в способе формирования микроструктурированного слоя нитрида титана воздействие на титановую подложку осуществляют фемтосекундным лазерным излучением с энергией в импульсе порядка 100 мкДж и с плотностью мощности в импульсе порядка 1013 Вт/см2 в среде жидкого азота.
На фиг.1 приведена схема воздействия лазерного излучения на поверхность титана. На фиг.2 приведено изображение фрагмента массива микроструктур на поверхности слоя нитрида титана. Изображение получено при помощи растрового электронного микроскопа Quanta 200 3D.
Способ реализован согласно схеме, представленной на фиг.1. Титановая подложка 4 устанавливалась в кювете 5 с жидким азотом 3. Жидкий азот покрывал поверхность подложки слоем с толщиной 10 мм. Излучение 1 фемтосекундного лазера фокусировалось объективом 2 на поверхность подложки. Параметры воздействия: длина волны излучения 800 нм, длительность импульса излучения 50 фс, частота повторения импульсов 1 кГц, энергия в импульсе 100 мкДж, радиус пятна фокусировки на поверхности подложки 100 мкм. Охлаждение жидким азотом обеспечивало ускоренную фиксацию результатов воздействия лазерного импульса, сопровождающегося плавлением материала, и устранение влияния приповерхностной плазмы.
Нелинейное взаимодействие мощного лазерного излучения с азотом приводит к филаментации пучка. В результате плавление титана происходило не интегрально по всей области лазерного воздействия, а в точках локальных максимумов пространственного распределения интенсивности излучения. Сформировавшиеся в этих точках кратеры равномерно заполняют область лазерного воздействия, образуя двумерную периодическую структуру с шагом около 3 мкм. В пределах отдельного кратера происходило плавление материала по традиционному для лазерного воздействия сценарию. Расславленный материал выносился из кратера на прилегающую к нему поверхность мишени, где впоследствии застывает, образуя валик. После окончания действия лазерного импульса под действием жидкого азота расплав быстро затвердевал, а поверхность мишени охлаждалась. В результате на поверхности мишени формировалась упорядоченная двумерная система микрократеров с диаметром 2 мкм, глубиной 300 нм и периодом 3 мкм (фиг.2). Каждый микрократер окружен кольцом шириной 300 нм и высотой 300 нм. Таким образом поверхность возможного контакта уменьшается в 9 раз.
В течение действия лазерного импульса происходила интенсивная диффузия азота в титан и формирование нитрида титана как в областях расплава, так между ними. В результате на поверхности мишени был образован сплошной структурированный слой нитрида титана. Короткая длительность импульса лазерного излучения и его малая энергия не позволяют прогреть обрабатываемый материал на значительную глубину. Таким образом исходные механические свойства основного материала под слоем нитрида титана остаются неизменными.
Класс C23C8/36 с использованием ионизированных газов, например ионоазотирование
Класс C23C14/28 с использованием волновой энергии или облучения частицами