способ получения наноструктуированных слоев магнитных материалов на кремнии для спинтроники

Классы МПК:H01F10/10 отличающиеся составом
H01F41/20 путем испарения
Автор(ы):, , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Росбиоквант" (ООО "Росбиоквант") (RU)
Приоритеты:
подача заявки:
2012-11-02
публикация патента:

Изобретение относится к области электротехники, в частности к способам получения магнитных сред для записи информации с высокой плотностью. Способ получения наноструктурированных слоев магнитных материалов на кремнии для спинтроники включает магнетронное распыление составной мишени, состоящей из кремния 85-99% и ферромагнитного металла 1-15%, при этом магнетронное распыление проводят в среде аргона, давление в рабочей камере во время распыления составляет (6÷7)×10-3 Па, давление аргона в магнетроне - (6÷7)×10-1 Па, скорость нанесения слоя гетерогенной смеси магнитного материал (22÷25) нм/с, плазмохимическое травление во фторсодержащей плазме при давлении азота в рабочей камере 4÷4,5 Па, скорости травления слоя (10÷12) нм/с, и термическую обработку в вакууме 0,5×10-3 Па, температуре 300-400оС, длительностью 10-15 мин. Повышение однородности распределения компонентов в мелкозернистом слое ноноструктурированной магнитной пленке является техническим результатом изобретения. 1 з.п. ф-лы, 3 ил. способ получения наноструктуированных слоев магнитных материалов   на кремнии для спинтроники, патент № 2522956

способ получения наноструктуированных слоев магнитных материалов   на кремнии для спинтроники, патент № 2522956 способ получения наноструктуированных слоев магнитных материалов   на кремнии для спинтроники, патент № 2522956 способ получения наноструктуированных слоев магнитных материалов   на кремнии для спинтроники, патент № 2522956

Формула изобретения

1. Способ получения наноструктурированных слоев магнитных материалов на кремнии для спинтроники, включающий магнетронное распыление составной мишени, обработку полученной пленки ионами, термическую обработку структур в вакууме, отличающийся тем, что мишень состоит из кремния 85-99% и ферромагнитного металла 1-15%, магнетронное распыление проводят в среде аргона, давление в рабочей камере во время распыления (6÷7)×10-3 Па, давление аргона в магнетроне (6÷7)×10-1 Па, скорость нанесения слоя гетерогенной смеси магнитного материала, кремния и продуктов их взаимодействия на подложке монокристаллического кремния (22÷25) нм/с, плазмохимическое травление проводят во фторсодержащей плазме при давлении азота в рабочей камере 4÷4,5 Па, суммарном давлении хладона 14 и азота в рабочей камере во время травления 1,33 Па, скорость травления слоя (10÷12) нм/с, термическую обработку проводят при вакууме 0,5×10 -3 Па, температуре 300-400оС, длительностью 10-15 мин.

2. Способ по п.1, отличающийся тем, что в качестве ферромагнитных металлов используют железо, никель, кобальт.

Описание изобретения к патенту

Изобретение относится к области электротехники, в частности к способам получения магнитных сред для записи информации с высокой плотностью, и может быть использовано для спинтроники.

Известен способ получения пленки спинтронного материала на основе диоксида титана, легированного ионами кобальта, включающий магнетронное распыление сплавной металлической мишени-прекурсора в аргонокислородной атмосфере (Балагуров Л.А. и др. О природе ферромагнетизма в полупроводниковом оксиде Ti2-способ получения наноструктуированных слоев магнитных материалов   на кремнии для спинтроники, патент № 2522956 : Со. Письма в ЖЭТФ, 79(2), 111, 2004). Полученный ферромагнитный полупроводник может быть использован в электронных устройствах для спинтроники, но степень его намагниченности насыщения, при этом оказывается невысокой.

Известен способ получения композитной гранулированной тонкой пленки, содержащей зерна высокоэрцетивного сплава FePt в изолирующей матрице Si 3N4. Пленка изготавливается при помощи совместного вакуумного магнетронного распыления мишени заданного состава на охлажденную подложку из окиси кремния или кварцевого стекла. Для перевода сплава FePt в кристаллическую фазу пленка отжигалась в вакууме при температуре 600°С. К недостаткам данного способа можно отнести достаточно сложный и трудноконтролируемый технологический процесс и относительно большой размер магнитных зерен (патент США № 6183606, 2001).

Известен способ получения среды для хранения информации, заключающийся в том, что в исходную матрицу из магнитного материала вводятся примеси или дефекты, которые взаимодействуют с матрицей (патент РФ № 2227941, H01F 10/08, 2004). В результате чего в ней формируются мелкодисперсные области (кластеры) с характерными размерами от нескольких ангстрем до нескольких десятков нанометров и с существенно отличным от основной матрицы типом магнитного состояния. Кластеры устойчиво фиксируются в матрице в позициях, связанных с пространственным расположением примесей и дефектов. В качестве исходной матрицы используют материал, обладающий, например, ферромагнитным типом магнитного упорядочения, полученный, например, магнетронным распылением составной мишени в виде тонкой пленки. Введение дефектов и изменение их концентрации осуществляется облучением матрицы в процессе ее формирования или при ее последующей обработке высокоэнергетическими фотонами, ионами, электронами и другими частицами. Свойства полученного материала для записи могут также изменяться путем термообработки (отжиг, закалка и т.д.) в вакууме или газовой атмосфере (аргон и др.), вызывающей рекристаллизацию или иные изменения кристаллической структуры матрицы.

Недостатком данного способа является большое количество технологических операций при совмещении с кремниевым КМОП-процессом и использование нестандартного технологического оборудования.

Технический результат заключается в получении материала, обеспечивающего полностью оптическое перемагничивание, при помощи только стандартного промышленного оборудования.

Технический результат достигается тем, что в способе получения наноструктурированных слоев магнитных материалов на кремнии для спинтроники, включающем магнетронное распыление составной мишени, обработку полученной пленки ионами, термическую обработку структур в вакууме, согласно изобретению мишень состоит из кремния 85-99% и ферромагнитного металла 1-15%, магнетронное распыление проводят в среде аргона, предварительный отжиг пластин при 200÷250°С, предварительный вакуум 5×10-4 Па, давление в рабочей камере во время распыления (6÷7)×10-3 Па, давление аргона в магнетроне (6÷7)×10-1 Па, скорость нанесения слоя гетерогенной смеси магнитного материала, кремния и продуктов их взаимодействия на подложке монокристаллического кремния (22÷25) нм/с, плазмохимическое травление проводят во фторсодержащей плазме при давлении азота в рабочей камере 4÷4,5 Па, суммарном давлении хладона 14 и азота в рабочей камере во время травления 1,33 Па, скорость травления слоя (10÷12) нм/с, термическую обработку проводят при вакууме 0,5×10 -3 Па, температуре 300-400°С, длительностью 10-15 мин.

В качестве ферромагнитных металлов используют железо, никель, кобальт.

Данный способ может быть использован для серийного производства получения на кремнии наноструктурированных магнитных слоев, так как ориентирован на использование технологии кремниевой микроэлектроники, заключающийся в следующем.

Получение базового слоя на кремнии для формирования наноструктурированной магнитной пленки.

Получение гетерогенных слоев для базового слоя на кремнии проводится методом магнетронного распыления составной мишени кремний + ферромагнитный металл с контролируемой концентрацией компонентов кремний 85-99% + ферромагнитный металл (железо, никель, кобальт) 1-15%. Эта операция обеспечивает частичный синтез силицидов в паровой фазе и формирование на подложке кремния базового слоя для магнитной пленки на кремнии. Полученный слой имеет мелкозернистую структуру, статистически однородное распределение компонентов. Фазовый состав базового слоя: ферромагнитные металлы, силициды ферромагнитных металлов и кремний. Толщина слоя с воспроизводимыми свойствами может меняться в пределах 0.1-0.12 мкм.

Плазмохимическая обработка и селективное травление.

Компоненты гетерогенной смеси выбираются таким образом, чтобы они различались химической активностью по отношению к фторсодержащей плазме: кремний - высокая химическая активность, силициды ферромагнитных металлов - низкая химическая активность, ферромагнитные металлы - инертны. При обработке во фторсодержащей плазме происходит селективное вытравливание свободного кремния из пленки и обогащение соответственно магнитным материалом. Это приводит, с одной стороны, к структурной неустойчивости гетерогенного слоя, с другой, - к локальному взаимодействию ФМ-металлов с подложкой. В результате совокупности элементарных стадий плазмохимических и топохимических реакций происходит формирование самоорганизованных наноструктур магнитных пленок на основе силицидов переходных металлов, характеризующихся:

- высокой адгезией пленка-подложка;

- однородностью наноструктуры с размером кластера до 50 нм;

- магнитным откликом.

Термическая обработка.

Термическая обработка проводится в вакууме при температуре 300-400°С. В выбранных режимах обнаруживается высокая термостабильность, происходит стабилизация магнитных и структурных свойств пленки.

На фиг.1 изображены: а - АСМ-топография подложки Si, размер скана 10×10 мкм; б - МСМ-картина намагниченности контрольного образца Si; на фиг.2 изображены: а - АСМ-топограмма поверхности в системе Si-Ni после процесса избирательного плазмохимического травления (размер скана 1×1 мкм), б - профиль сечения АСМ-топограммы поверхности в системе Si-Ni после процесса, в - магнитный отклик в системе Si-Ni после процесса магнетронного напыления (размер скана 10×10 мкм); на фиг 3 изображены: а - АСМ-топограмма поверхности в системе Si-Ni после процесса магнетронного напыления (размер скана 10×10 мкм); б - магнитный отклик в системе Si-Ni после избирательного плазмохимического травления (размер скана 1×1 мкм). Пример получения магнитных пленок на кремнии.

Используются кремниевые пластины с ориентацией [100].

Напыление базового слоя

Слой «кремний - магнитный материал» наносится методом вакуумного напыления на установке магнетронного распыления типа 01НИ-7-006 в среде аргона с использованием комбинированной (составной мишени) мишени, состоящей из кремния и магнитного материала, закрепленных на медном основании.

предварительный отжиг пластин 2004÷250°С
предварительный вакуум5×10-4 Па
давление в рабочей камере во время распыления (6÷7)×10-3 Па
давление аргона в магнетроне (6÷7)×10-1 Па
скорость нанесения слоя(22÷25) нм/с
толщина нанесенного слоя (0,1-0,12)мкм

Плазмохимическая обработка

Плазмохимическая обработка проводилась на установке 08ПХО-100Т-005.

предварительный вакуум 4×10-1 Па
давление азота в рабочей камере4÷4,5 Па
суммарное давление хладона 14 и азота в рабочейспособ получения наноструктуированных слоев магнитных материалов   на кремнии для спинтроники, патент № 2522956
камере во время травления 1,33 Па
скорость травления слоя(10÷12) нм/с
толщина удаленного слоя 0,7-0,8 толщины исходного слоя (7000-10000) нм

Термообработка

предварительный вакуум 1×10-4 Па
вакуум в процессе термообработки0,5×10 -3 Па
температура 300-400°С
длительность 10-15 мин

Контроль структуры и магнитных свойств наноструктуированных слоев магнитных материалов.

При отработке технологий получения наноструктурированных магнитных пленок в системах Si-Ni, Si-Co использовались такие методы сканирующей зондовой микроскопии как атомно-силовая и магнитно-силовая микроскопия. Исследованию подвергались исходные пластины кремния и все изготовленные образцы.

Для определения уровня шумового сигнала на картине намагниченности в методе магнитно-силовой микроскопии производилось сканирование шлифованной подложки Si с перепадом рельефа ~60 нм. Перепад сигнала на картине намагниченности содержит слабо заметные следы влияния рельефа подложки. При расстоянии между подложкой и зондом 10 нм перепад составил ~15 пА. Аналогичные измерения были проведены для других расстояний между подложкой и зондом и служили в качестве пороговой величины при оценке наличия/отсутствия магнитного отклика у исследуемых образцов.

Исследование образцов, полученных методом избирательного плазмохимического травления гетерогенного слоя кремний-силицид переходного металла (Fe, Ni, Со) - ферромагнитный металл (Fe, Ni, Со), показало, что в результате процесса избирательного травления кремния происходит образование нанокластеров силицидов ферромагнитных металлов до 50 нм и для этих структур характерен переход от многодоменного состояния к однодоменному. Размер магнитных наноструктур, полученных по данной технологии, не превышает 50 нм.

Класс H01F10/10 отличающиеся составом

способ получения тонкопленочных полимерных нанокомпозиций для сверхплотной магнитной записи информации -  патент 2520239 (20.06.2014)
сплав для носителя термомагнитной записи -  патент 2326451 (10.06.2008)
способ получения пленочных полимерных нанокомпозиций -  патент 2224710 (27.02.2004)
тонкопленочный магнитный материал -  патент 2120147 (10.10.1998)

Класс H01F41/20 путем испарения

Наверх