способ защиты p-n-переходов на основе окиси бериллия
Классы МПК: | H01L21/316 из оксидов, стекловидных оксидов или стекла на основе оксидов |
Автор(ы): | Исмаилов Тагир Абдурашидович (RU), Шангереева Бийке Алиевна (RU), Шангереев Юсуп Пахрутдинович (RU), Муртазалиев Азамат Ибрагимович (RU) |
Патентообладатель(и): | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (ДГТУ) (RU) |
Приоритеты: |
подача заявки:
2013-01-10 публикация патента:
27.07.2014 |
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности p-n-переходов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса. В способе защиты p-n-переходов на основе окиси бериллия защита поверхности p-n-переходов осуществляется на основе пленки окиси бериллия вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре 1000°C, температура кристалла 600°С. Окись бериллия в виде порошка, а в качестве несущего агента используется галоген HBr. Устанавливается перепад температур между источником окиси бериллия и полупроводниковым кристаллом. Расстояние между источником окиси бериллия и кристаллом равно 12 см. Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки окиси бериллия =0,8±0,1 мкм.
Формула изобретения
Способ защиты p-n-переходов на основе окиси бериллия, включающий защиту поверхности p-n-переходов, отличающийся тем, что защиту p-n-переходов ведут на основе пленки окиси бериллия в виде порошка при температуре 1000°C, температура кристалла 600°C, а в качестве несущего агента используется галоген HBr, при котором устанавливается перепад температур между источником окиси бериллия и полупроводниковым кристаллом, расстояние между источником окиси бериллия и кристаллом 12 см, причем толщина пленки окиси бериллия =0,8±0,1 мкм.
Описание изобретения к патенту
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем (ИС), в частности к способам защиты поверхности p-n-переходов.
Известен способ защиты поверхности p-n-переходов на основе окислов металлов: циркония, титана, алюминия и др. [1].
Основным недостатком этого способа является неравномерность, высокая температура и длительность процесса.
Целью изобретения является достижение равномерной поверхности, уменьшение температуры и длительности процесса.
Поставленная цель достигается использованием защитной пленки на основе пленки окиси бериллия.
Предлагаемый способ по сравнению с прототипом позволяет получить пленку для защиты поверхности p-n-переходов на основе окиси бериллия в виде порошка при температуре 1000°C и при этом достигается равномерность поверхности и уменьшение длительности процесса.
Сущность способа заключается в том, что защита поверхности p-n-переходов осуществляется на основе пленки окиси бериллия вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре 1000°C, температура кристалла 600°C. Окись бериллия в виде порошка, а в качестве несущего агента используется галоген HBr.
Поставленная цель достигается путем пропускания в кварцевую трубу инертного газа, при котором устанавливается перепад температур между источником окиси бериллия и полупроводниковым кристаллом. Расстояние между источником окиси бериллия и кристаллом равно 12 см.
Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки окиси бериллия =0,8±0,1 мкм.
Сущность изобретения подтверждается следующими примерами.
ПРИМЕР 1. Процесс защиты поверхности p-n-переходов из окиси бериллия осуществляется вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре рабочей зоны -900°C, температура полупроводникового кристалла 600°C. Затем источник окиси бериллия в виде порошка загружают в кварцевую трубу, а в качестве несущего агента используется галоген HBr. Расстояние между источником окиси бериллия и кристаллом 8 см. Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина защитной пленки окиси бериллия =0,6±0,1 мкм.
ПРИМЕР 2. Способ осуществляют аналогично примеру 1.
Температура рабочей зоны 950°C.
Расстояние между источником окиси бериллия и полупроводниковым кристаллом 10 см.
Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина защитной пленки окиси бериллия =0,7±0,1 мкм.
ПРИМЕР 3. Способ осуществляют аналогично примеру 1. Температура рабочей зоны 1000°C.
Расстояние между источником окиси бериллия и полупроводниковым кристаллом 12 см.
Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина защитной пленки окиси бериллия =0,8±0,1 мкм.
Таким образом, предлагаемый способ по сравнению с прототипом позволяет получить пленку для защиты поверхности p-n-переходов на основе окиси бериллия при температуре 1000°C и при этом достигается равномерность поверхности и уменьшение длительности процесса.
ЛИТЕРАТУРА
1. А.И.Курносов, В.В.Юдин. Технология производства полупроводниковых приборов. - М.: «Высшая школа», 1974, 400 с.
Класс H01L21/316 из оксидов, стекловидных оксидов или стекла на основе оксидов