композиция для изготовления жаростойких композитов
Классы МПК: | C04B28/34 содержащие низкотемпературные фосфатные связующие C04B111/20 сопротивление химическому, физическому или биологическому воздействию |
Автор(ы): | Абдрахимова Елена Сергеевна (RU), Рощупкина Ирина Юрьевна (RU), Абдрахимов Владимир Закирович (RU) |
Патентообладатель(и): | федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) (RU) |
Приоритеты: |
подача заявки:
2013-02-07 публикация патента:
27.07.2014 |
Изобретение относится к области строительных материалов, в частности к производству жаростойкого бетона на основе химических связующих. Композиция для изготовления жаростойкого бетона, включающая отработанный катализатор ИМ-2201, щебень, песок и H3 PO4, отличающаяся тем, что она дополнительно содержит обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием, мас.%: SiO2 - 4,75; Al2O 3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5; R2O - 5,13, при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, H3PO4 10-15, указанный солевой шлак 24-30. Технический результат - повышение прочности при сжатии и термостойкости. 4 табл.
Формула изобретения
Композиция для изготовления жаростойкого бетона, включающая отработанный катализатор ИМ-2201, щебень, песок и H3 PO4, отличающаяся тем, что она дополнительно содержит обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием, мас.%: SiO2 - 4,75; Al2O 3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5; R2O - 5,13 при следующем соотношении компонентов, мас.%:
отработанный катализатор ИМ-2201 | 10-15 |
щебень | 33-40 |
песок | 10-13 |
H3PO4 | 10-15 |
обожженный солевой алюминиевый шлак при температуре | |
1000°C с содержанием оксидов, мас.%: SiO2 - 4,75 | |
Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5 | |
R2O - 5,13 | 24-30 |
Описание изобретения к патенту
Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. К химически связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.
Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас.%: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 / пат. Российской Федерации № 2440312, МПК C04B 14/24. Композиция для производства пористого заполнителя. / Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. № 2010122114. заявл. 31.05.20910; опубл. 20.01.2012. Бюл. № 2/ [1].
Недостатком указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.
Наиболее близкой к изобретению является композиция для получения жаростойких композитов, включающая следующие компоненты, мас.%: глиноземсодержащий шлам - 10,5-10,53 (220 кг/м3); отработанный катализатор ИМ-2201 - 10,5-10,53 (220 кг/м3 ); щебень - 35,88-35,89 (750 кг/м3); песок - 30,62-30,63 (640 кг/м3); H3PO4 - 12,44-12,45 (260 кг/м3) / Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих / А.И. Хлыстов, С.В. Соколова, А.В. Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - № 9. - С.38-42./ [2].
Недостатком указанного состава композиции является относительно низкий предел прочности при сжатии после твердения и нагревания до температуры 1200°C и низкая термостойкость.
Сущность изобретения - повышение качества жаростойкого бетона.
Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойкого бетона.
Указанный технический результат достигается тем, что в известную композицию, включающую отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно вводят обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием оксидов, мас.%: SiO2 - 4,75; Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5; R2O - 5,13 при следующем соотношении компонентов, мас.%:
отработанный катализатор ИМ-2201 | 10-15 |
щебень | 33-40 |
песок | 10-13 |
H3PO4 | 10-15 |
обожженный солевой алюминиевый шлак при температуре | |
1000°C с содержанием оксидов, мас.%: SiO2 - 4,75 | |
Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5 | |
R2O - 5,13 | 24-30 |
Солевой алюминиевый шлак является отходами алюминиевого производства. По показателям острой токсичности в эксперименте на теплокровных животных (мыши) и двух видов гидробионитов (ветвистоусые рачки Daphnia magna Straus и зеленые протококковые водоросли Scenedesmus guadricauda) солевые отходы относятся к III классу опасности по степени воздействия на организм и к IV классу опасности для окружающей среды. Солевые алюминиевые шлаки имеют следующий химический состав состава, мас.%: NaCl - 10,25; CaO+CaCO3 - 14,28; MgO+MgCO3 - 15,30; FeCl3 - 0,001; SiO 2 - 3,10; Al2O3 - 41,282; KCl - 5,35; CuCl2 - 0,001; алкилмеркаптиты Al - 0,545; предельные углеводороды - 0,001; Al (металлический) - 9,89.
Солевой алюминиевый шлак обжигался при температуре 1000°C до химического состава, представленного в таблицах 1 и 2.
Таблица 1 | ||||||||||||||||
Химические составы алюмосодержащих отходов производств | ||||||||||||||||
Отход | Содержание оксидов, мас.% | |||||||||||||||
SiO2 | Al2 O3 | Fe2 O | CaO | MgO | Cr2O3 | R2O | П.п.п | |||||||||
1. Обожженный солевой алюминиевый шлак | 4,75 | 77,3 | 1,6 | 2,57 | 7,5 | - | 5,13 | 1,15 | ||||||||
2. Отработанный катализатор ИМ-2201 | 7,90 | 74,5 | 0,15 | - | 0,10 | 14,8 | 1,57 | - | ||||||||
Таблица 2 | ||||||||||||||||
Поэлементный химический состав отходов | ||||||||||||||||
Отход | Концентрация, мас.% | |||||||||||||||
O | Al | Mg | Na | Ca | Fe | Si | Cr | |||||||||
Обожженный солевой алюминиевый шлак | 66,34 | 26,96 | 2,73 | 1,90 | 0,45 | 0,14 | 1,48 | - | ||||||||
Катализатор ИМ-2201 | 60,74 | 26,58 | - | 2,81 | - | - | 2,82 | 8,1 |
После обжига солевого алюминиевого шлака химический состав его значительно обогатился оксидом алюминия (таблица 1), что будет способствовать повышению физико-механических свойств жаростойких композиций.
Для изготовления жаростойких бетонов использовались щебень и песок, отвечающие требованиям для производства бетонов:
А) щебень, отвечающий требованиям ГОСТа Г 8267-93 «Щебень и гравий из плотных горных пород для строительных работ. Технические условия» М 600, 800-1000, со средней плотностью зерен от 2,0 до 2,5 кг/м3 из карбонатных пород, добываемый в Самарской области, фракции 5-10 мм;
Б) песок, отвечающий требованиям ГОСТ 8736-93 «Песок для строительных работ. Технические условия». Песок речной, добываемый в Самарской области, имел следующие показатели: средняя плотность в сухом состоянии - 1,5 кг/м3; содержание илистых, пылевидных и глинистых частиц не более - 0,7% по массе; истинная плотность песка речного - 2,65 г/см3; наличие суглинка, комков глины и прочих засоряющих примесей не более - 0,05%; модуль крупности - 1,68.
В качестве фосфатных связующих использовалась ортофосфорная кислота H3PO 4 в чистом виде, но можно использовать однозамещенный фосфорнокислый алюминий Al(H2PO4)3, двухзамещенный фосфорнокислый алюминий Al2(H2PO4 )3, хромалюминий фосфорнокислый или алюмохромофосфатное связующее (АХФС) с общей формулой CrnAl4-n (H2PO4)2, где=1, 2, 3.
Сведения, подтверждающие возможность осуществления изобретения. Технологический процесс производства бесцементных жаростойких бетонов и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.
Следует отметить, что для своего затвердения и набора марочной прочности жаростойкие бетоны требуют особую термообработку.
Для бетонов на ортофосфорной кислоте с компонентами, представленными в таблице 3 - нагревание до 500°C с подъемом температуры до 200°C со скоростью 60°C/час и до 500°C-150°C/час, выдерживание в течение 4 часов, охлаждение вместе с печью.
Таблица 3 | |||
Составы для получения жаростойких бетонов | |||
Компоненты | Содержание компонентов, мас.% | ||
1 | 2 | 3 | |
Отработанный катализатор ИМ-2201 | 10 | 12 | 15 |
Щебень | 40 | 38 | 33 |
Песок | 10 | 11 | 13 |
H3PO4 | 10 | 12 | 15 |
Обожженные солевые алюминиевые шлаки | 30 | 27 | 24 |
В таблице 4 представлены физико-механические показатели жаростойкого бетона.
Таблица 4 | ||||
Физико-механические показатели жаростойкого бетона, после твердения и нагревания до температуры 1200°C | ||||
Показатели | Составы | Прототип | ||
1 | 2 | 3 | ||
Термостойкость, °C | 34 | 38 | 41 | 29 |
Механическая прочность на сжатие, МПа | 55,3 | 58,5 | 61,8 | 46 |
Огнеупорность, °C | 1640 | 1670 | 1680 | - |
Температура под нагрузкой 0,2 МПа, °C | 1550 | 1580 | 1590 | - |
Полученное техническое решение при использовании обожженного солевого алюминиевого шлака позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона.
Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Пат. Российской Федерации № 2440312, МПК C04B 14/24. Композиция для производства пористого заполнителя. / Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. - № 2010122114; заявл. 31.05.20910; опубл. 20.01.2012. Бюл. № 2.
2. Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих / А.И. Хлыстов, С.В. Соколова, А.В. Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - № 9. - С.38-42.
Класс C04B28/34 содержащие низкотемпературные фосфатные связующие
Класс C04B111/20 сопротивление химическому, физическому или биологическому воздействию