твэл ядерного реактора
Классы МПК: | G21C3/00 Реакторные топливные элементы и их блоки; выбор вещества для использования в качестве реакторных топливных элементов |
Автор(ы): | Павлов Сергей Владленович (RU), Сухих Алексей Васильевич (RU), Сагалов Сергей Сергеевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" (RU) |
Приоритеты: |
подача заявки:
2012-10-23 публикация патента:
10.08.2014 |
Изобретение относится к области ядерной техники и может быть использовано при создании тепловыделяющих элементов (твэлов) для атомных реакторов на тепловых и быстрых нейтронах. Технический результат - повышенный теплосъем в твэле ядерного реактора, что позволяет существенно повысить эксплуатационные характеристики твэлов ядерных реакторов. Твэл ядерного реактора, содержащий герметичную оболочку с размещенным в ней топливным сердечником и свободные объемы, дополнительно содержит рабочую жидкость с точками плавления и кипения, соответствующими диапазону рабочих температур на периферии у оболочки и в центре топливного сердечника, а топливный сердечник содержит ядерное топливо капиллярной структуры с сообщающейся пористостью. 6 з.п. ф-лы, 3 ил.
Формула изобретения
1. Твэл ядерного реактора, включающий герметичную оболочку с размещенным в ней топливным сердечником, верхний и нижний свободные объемы, отличающийся тем, что дополнительно содержит рабочее вещество, находящееся при эксплуатации в двухфазном состоянии: жидком у оболочки и парообразном в центре топливного сердечника, выполненного с сообщающейся пористостью, позволяющее реализовать эффективный теплосъем по механизму замкнутой тепловой трубы
2. Твэл по п.1, отличающийся тем, что в качестве ядерного топлива используют уран, уран с плутонием или торий с ураном в виде металла, сплава или химического соединения, выбранного из ряда: нитрид, карбид, оксид.
3. Твэл по п.1, отличающийся тем, что в качестве рабочего вещества используют серебро, кальций, сурьму, стронций, барий, таллий, индий, щелочные металлы, свинец, висмут или их сплавы.
4. Твэл по п.1, отличающийся тем, что в качестве топливного сердечника капиллярной структуры используют таблетки с центральным каналом и аксиальными (вертикальными) проточками на внешней поверхности или гранулят.
5. Твэл по п.1, отличающийся тем, что внутренняя поверхность его верхнего свободного объема содержит капиллярную структуру в виде экрана, сетки или пористого тела.
6. Твэл по п.1, отличающийся тем, что его оболочка выполнена составной: из ферритно-мартенситной и аустенитной коррозионно-стойких сталей на участке топливного сердечника и в районе верхнего свободного объема соответственно или цельной - полностью из каждой из этих сталей.
7. Твэл по п.1, отличающийся тем, что его нижний свободный объем содержит фильтры-сорбенты на основе металлической стружки, цеолита или активированного угля, очищающие рабочее вещество от примесей по механизму «холодной ловушки» и химической «горячей очистки».
Описание изобретения к патенту
Изобретение относится к области ядерной техники и может быть использовано при создании тепловыделяющих элементов (твэлов) для атомных реакторов на тепловых и быстрых нейтронах.
Известен стержневой твэл для ядерного реактора, состоящий из трубчатой оболочки из коррозионно-стойкой стали или циркониевого сплава, герметизированной на торцах заглушками, топливного сердечника из делящегося вещества в виде гранул, таблеток, втулок (таблетки с центральным каналом), нижнего и верхнего газосборника, заполненных инертным газом гелием.
Недостаточно эффективный теплосъем при использовании гелиевого подслоя, приводящий к повышению температуры топливного сердечника и оболочки в нерегламентных ситуациях - основной недостаток такого типа твэлов, широко используемых как в нашей стране, так и за рубежом.
Известен стержневой твэл для реактора на быстрых нейтронах, состоящий из оболочки, заглушенной на торцах, топливного сердечника в виде стержней или таблеток из UPuN, UPuC, UPuZr и жидкого металла, заполняющего зазор между топливом и оболочкой, нижний и частично верхний свободные объемы [Решетников Ф.Г., Бибилашнили Ю.К., Головнин И.С. и др. Разработка, производство и эксплуатация тепловыделяющих элементов энергетических реакторов: в 2 кн. / Под ред. Ф.Г.Решетникова. М.: Энергоатомиздат, 1995]. Использование жидкометаллического подслоя способствует улучшению теплопередачи только на начальной стадии эксплуатации. В дальнейшем из-за свеллинга - газового распухания - зазор между топливом и оболочкой исчезает, жидкий металл вытесняется в свободные объемы и не оказывает существенного влияния на теплосъем с поверхности твэла.
Задачей заявляемого технического решения является реализация повышенного теплосъема в твэле ядерного реактора, что позволит существенно повысить эксплуатационные характеристики твэлов ядерных реакторов.
Для решения этой задачи твэл ядерного реактора, включающий герметичную оболочку с размещенным в ней топливным сердечником и свободные объемы, дополнительно содержит рабочую жидкость с точками плавления и кипения, соответствующими диапазону рабочих температур на периферии у оболочки и в центре топливного сердечника, а топливный сердечник содержит ядерное топливо капиллярной структуры с сообщающейся пористостью.
В качестве ядерного топлива используют уран, торий, плутоний в виде металла, сплава или химического соединения, выбранного из ряда: интерметаллид, оксид, нитрид, карбид, в таблетках с центральным каналом и аксиальными проточками на внешней поверхности для создания капиллярной структуры.
В качестве рабочей жидкости используют щелочные металлы, а также серебро, кальций, сурьму, стронций, барий, таллий, индий, свинец, висмут или их сплавы.
Внутренняя поверхность верхнего свободного объема твэла содержит капиллярную структуру в виде экрана, сетки, пористого тела и т.п.
Оболочка твэла может быть выполнена полностью из коррозионно-стойкой аустенитной или ферритно-мартенситной стали, или составной: в районе верхнего свободного объема - из аустенитной, а на участке нижнего свободного объема и топливного сердечника - из ферритно-мартенситного стали.
Твэл содержит фильтры-сорбенты холодной и горячей очистки, размещенные в его нижнем и верхнем свободных объемах, соответственно.
Изготовление твэла, в котором сердечник из ядерного топлива (уран, плутоний в виде металла, сплава или химического соединения) выполнен с системой сообщающейся пористости (гранулят, таблетки с центральным каналом и зазором как между таблетками, так и у оболочки), а нижний свободный объем, пористый сердечник и часть верхнего свободного объема заполнены жидким металлом, например натрием, позволяет достичь поставленной цели, а именно реализовать эффективный теплосъем по механизму замкнутой тепловой трубы при его эксплуатации в вертикальном положении в активной зоне ядерного реактора.
В высокотемпературной части топливного сердечника натрий превращается в пар (Tкип.Na=880°С), перемещается по центральному каналу (или порам в грануляте) в верхний газосборник (Тгаз. =600-700°С), конденсируется на стенках его оболочки и под действием гравитации (и капиллярных сил) стекает по зазору в нижнюю часть сердечника, после чего процесс повторяется.
Для регулирования температуры в твэле с теплосъемом по механизму тепловой трубы используют гофрирование или оребрение оболочки верхнего свободного объема, а также добавление к рабочей жидкости неконденсирующегося газа. Газ вытесняется потоком пара в зону конденсации, где устанавливается относительно резкая граница раздела, выше которой теплоотвод практически отсутствует. Таким образом, перемещая границу раздела, варьируя порции вносимого газа, можно изменять поверхность теплопередачи в верхнем свободном объеме, а следовательно, регулировать температуру топлива в твэле.
Реализация эффективного теплосъема с твэлов способствует:
- повышению безопасности ядерного реактора из-за уменьшения теплосодержания в его активной зоне;
- улучшению совместимости топлива с оболочкой из коррозионно-стойкой стали и циркониевого сплава;
- снижению вакансионного распухания оболочек из аустенитных хромоникелевых сталей из-за существенного уменьшения их рабочей температуры в области максимального флюенса нейтронов;
- созданию условий для применения в качестве материала оболочек активной части твэла слабо распухающих ферритно-мартенситных сталей (материал оболочки верхнего газосборника - аустенитная хромоникелевая сталь, например ЧС-68).
На фиг.1 изображен продольный разрез твэла реактора на быстрых
нейтронах, где:
1 - защитная оболочка активной части твэла;
2 - оболочка верхнего газосборника твэла;
3 - переходник;
4 - верхняя заглушка;
5 - нижняя заглушка;
6 - топливный сердечник с системой сообщающейся пористости;
7 - нижний объем, свободный от топлива;
8 - верхний свободный объем, предназначенный для сбора газообразных продуктов деления;
9 - пористая пробка, фиксирующая топливный сердечник;
10 - рабочее вещество - жидкий металл, заполняющий нижний свободный объем, топливный сердечник с системой сообщающейся пористости и частично верхний свободный объем;
11 - фильтры-сорбенты для очистки рабочего вещества от примесей;
12 - направление потока рабочей жидкости.
Фиг.2 демонстрирует виды капиллярных структур: 13 - материал стенки, 14 - многослойная сетка или пористое тело, 15 - пористый экран.
На фиг.3 представлены макро- (а) и микроструктура (б) шлифов экспериментальных твэлов с гелиевым (1) и натриевым (2) заполнением (центр A3).
Тепловыделяющий элемент для ядерного реактора содержит оболочку 1, герметизированную с торцов верхней 2 и нижней 3 заглушками, во внутренней полости которой размещены топливный сердечник 4 с сообщающейся пористостью, нижний 5 и верхний 6 свободные от топлива объемы. Топливный столб фиксируется пористой пробкой 7, приваренной точечной сваркой к оболочке. Рабочим веществом - жидким металлом 8 заполнен нижний свободный объем, топливный сердечник и часть верхнего свободного объема. Верхний и нижний свободные объемы содержат фильтры-сорбенты 9, например, на основе металлической стружки, цеолита, активированного угля, очищающие рабочее вещество от примесей по механизму «холодной ловушки» и химической «горячей очистки».
На фиг.3 представлены результаты металлокерамографических исследований двух соседних твэлов с гранулированным оксидным топливом (эффективная плотность 8,84 г/см3, О/М=2,001-2,003) и оболочкой из стали аустенитного класса 0Х16Н15М3Б (сечение трубы 6,0×0,3 мм) с гелиевым и натриевым заполнением. Твэлы облучались в составе экспериментальной ТВС реактора БОР-60 при максимальной удельной тепловой нагрузке 420 Вт/см.
В отличие от твэла с гелиевым подслоем (фиг.3а, 1) в твэле с натриевым заполнением не произошло переформирование исходной структуры гранулированного топлива, зона столбчатых зерен и центральная полость не образовались. Это свидетельствует о том, что теплосъем по механизму тепловой трубы снизил температуру центра топлива с больше чем 2200°С до меньше чем 1600°С.
В твэле с натриевым заполнением отсутствовали признаки взаимодействия топлива с оболочкой. В твэлах с гелиевым подслоем коррозия стали со стороны топлива была значительной. Несколько твэлов с гелиевым заполнением в ЭТВС вышли из строя из-за появления сквозных дефектов оболочки коррозионного происхождения. Профилометрические исследования показали меньшую в ~3 раза величину вакансионного распухания оболочки твэла с натриевым заполнением по сравнению с твэлами с гелиевым подслоем.
Снижение температуры открывает заманчивую перспективу применения в качестве материала оболочки активной части твэла слабораспухающей ферритно-мартенситной стали, в настоящее время не используемой из-за ее невысокой длительной прочности при температурах, реализуемых в энергетическом реакторе на быстрых нейтронах БН-600.
Класс G21C3/00 Реакторные топливные элементы и их блоки; выбор вещества для использования в качестве реакторных топливных элементов