напорная камера

Классы МПК:G21C15/02 устройство и расположение каналов для передачи тепла теплоносителю, например для циркуляции теплоносителя через опоры топливных элементов 
Автор(ы):,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпуновского" (RU)
Приоритеты:
подача заявки:
2012-08-21
публикация патента:

Изобретение относится к теплотехнике. Напорная камера (4) содержит цилиндрический корпус (3) с днищем (2), цилиндрическую обечайку (8) и решетку (6). Цилиндрическая обечайка (8) установлена коаксиально корпусу (3) и разделяет его полость на сообщенные между собой центральный отводящий (7) и боковой кольцевой подводящий (1) каналы. Решетка (6) размещена в центральном отводящем канале (7). Коэффициент пористости решетки (6) соответствует диапазону от 0,05 до 0,7. Для напорной камеры (4) даны соотношения, учитывающие, во-первых, взаимосвязь максимального радиуса перфорированной части решетки (6), высоты напорной камеры (4), наружного радиуса цилиндрической обечайки (8), высоты входа в напорную камеру (4) и внутреннего радиуса корпуса (3), во-вторых, взаимосвязь высоты напорной камеры (4), наружного радиуса цилиндрической обечайки (8), высоты входа в напорную камеру (4) и внутреннего радиуса корпуса (3), в-третьих, взаимосвязь высоты входа в напорную камеру (4), внутреннего радиуса корпуса (3), внутреннего и наружного радиусов цилиндрической обечайки (8), в-четвертых, взаимосвязь высоты напорной камеры (4) и высоты входа в нее и, в-пятых, высоты входа в напорную камеру (4), наружного радиуса цилиндрической обечайки (8) и внутреннего радиуса корпуса (3). Дано соотношение по выбору размеров проточной части напорной камеры (4). Технический результат - обеспечение оптимальной гидродинамики потока на выходе из напорной камеры (4). 1 ил. напорная камера, патент № 2525857

напорная камера, патент № 2525857

Формула изобретения

Напорная камера, содержащая цилиндрический корпус с днищем, цилиндрическую обечайку, установленную коаксиально корпусу и разделяющую его полость на сообщенные между собой центральный отводящий и боковой кольцевой подводящий каналы, и решетку, размещенную в центральном отводящем канале, отличающаяся тем, что при коэффициенте пористости решетки, соответствующем диапазону от 0,02 до 0,7, и соотношениях размеров напорной камеры, соответствующих условиям:

напорная камера, патент № 2525857

напорная камера, патент № 2525857

напорная камера, патент № 2525857

напорная камера, патент № 2525857

напорная камера, патент № 2525857

где

r1 - максимальный радиус перфорированной части решетки, м;

H - высота напорной камеры, м;

r3 - наружный радиус цилиндрической обечайки, м;

h - высота входа в напорную камеру, м;

r4 - внутренний радиус корпуса, м;

r 2 - внутренний радиус цилиндрической обечайки, м,

размеры проточной части напорной камеры выбирают с учетом гидродинамических характеристик ее проточной части по следующему соотношению

напорная камера, патент № 2525857

где

M - массовый расход рабочей среды в отверстии решетки, кг/с;

напорная камера, патент № 2525857 - средний массовый расход рабочей среды в отверстиях решетки, кг/с;

напорная камера, патент № 2525857 - коэффициент гидравлического сопротивления решетки;

напорная камера, патент № 2525857 P - полные потери напора на прокачку рабочей среды через решетку, Па;

напорная камера, патент № 2525857 - средняя плотность рабочей среды, кг/м3;

напорная камера, патент № 2525857 - средняя скорость рабочей среды в отверстиях решетки, м/с;

напорная камера, патент № 2525857 - относительная площадь поперечного сечения струи;

H - высота напорной камеры, м;

напорная камера, патент № 2525857 - высота струи

рабочей среды во входной части напорной камеры, м;

r3 - наружный радиус цилиндрической обечайки, м;

h - высота входной части напорной камеры, м;

r4 - внутренний радиус корпуса, м;

n - число отверстий в решетке;

r0 - радиус отверстия решетки, м;

r - текущий радиус решетки, м;

r1 - максимальный радиус перфорированной части решетки, м.

Описание изобретения к патенту

Изобретение относится к теплотехнике и может быть использовано в энергетической, химической и других областях промышленности.

Известна напорная камера, содержащая корпус, внутри которого с зазором установлена обечайка, цилиндрическую кольцевую вставку, верхний торец которой примыкает в нижнему торцу обечайки, а нижний торец установлен с зазором по отношению к днищу, коаксиальные боковой опускной и центральный отводящий каналы, сообщенные между собой напорной камерой, вытеснитель, выполненный в виде цилиндра с крышкой, верхняя часть которого выведена в полость кольцевой вставки, установлена с зазором по отношению к ней и расположена ниже верхней части кольцевой вставки [Патент РФ на изобретение № 2025799 «Ядерный реактор»; приоритет от 02.10.1990; зарегистрирован 30.12.1994].

Недостатком известного устройства является то, что в нем не предусмотрена возможность получения заданного профиля расхода (скорости) на выходе из напорной камеры за счет обеспечения соответствующего соотношения размеров напорной камеры и учета гидравлического сопротивления ее выходной части.

Наиболее близким по технической сущности к заявляемому устройству является напорная камера, содержащая корпус, внутри которого с зазором установлена обечайка, коаксиальные боковой опускной и центральный отводящий каналы, сообщенные между собой напорной камерой. Для напорной камеры представлено соотношение по оценке неравномерности распределения скорости на выходе из нее, учитывающее соотношение размеров напорной камеры и гидравлическое сопротивление ее выходной части [Кириллов П.Л., Юрьев Ю.С., Бобков В.П. Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы). М.: Энергоатомиздат, 1990. Стр.144-150].

Недостатком известного устройства является то, что характерное для него соотношение, учитывающее взаимосвязь гидродинамических характеристик потока в проточной части напорной камеры и соотношения ее размеров, получено для конструкции напорной камеры, в которой имеет место движение потока рабочей среды в канале между днищем и решеткой с раздачей расхода по пути в направлении от периферии напорной камеры к ее центру, и, соответственно, не может быть использовано для напорных камер с обратным поворотом потока со струйной схемой течения рабочей среды.

Технический результат состоит в создании напорной камеры с заданной гидравлической неравномерностью на выходе из нее.

Для исключения указанного недостатка в напорной камере, содержащей цилиндрический корпус с днищем, цилиндрическую обечайку, установленную коаксиально корпусу и разделяющую его полость на сообщенные между собой центральный отводящий и боковой кольцевой подводящий каналы, и решетку, размещенную в центральном отводящем канале, предлагается при коэффициенте пористости решетки, соответствующем диапазону от 0,05 до 0,7, при соотношениях размеров напорной камеры, учитывающих, во-первых, взаимосвязь максимального радиуса перфорированной части решетки, высоты напорной камеры, наружного радиуса цилиндрической обечайки, высоты входа в напорную камеру и внутреннего радиуса корпуса, во-вторых, взаимосвязь высоты напорной камеры, наружного радиуса цилиндрической обечайки, высоты входа в напорную камеру и внутреннего радиуса корпуса, в-третьих, взаимосвязь высоты входа в напорную камеру, внутреннего и наружного радиусов цилиндрической обечайки и внутреннего радиуса корпуса, в-четвертых, взаимосвязь высоты напорной камеры и высоты входа в нее и, в-пятых, высоты входа в напорную камеру, наружного радиуса цилиндрической обечайки и внутреннего радиуса корпуса, размеры проточной части напорной камеры выбирать с учетом гидродинамических характеристик ее проточной части по соотношению, учитывающему массовый расход рабочей среды в отверстии решетки, средний массовый расход рабочей среды в отверстиях решетки, полные потери напора на прокачку рабочей среды через решетку, среднюю плотность рабочей среды, среднюю скорость рабочей среды в отверстиях решетки, высоту напорной камеры, наружный радиус цилиндрической обечайки, высоту входной части напорной камеры, внутренний радиус корпуса, число отверстий в решетке, радиус отверстия решетки, текущий радиус решетки и максимальный радиус перфорированной части решетки.

Продольное осевое сечение одного из вариантов исполнения напорной камеры представлено на фигуре, на которой приняты следующие обозначения: 1 - боковой кольцевой подводящий канал; 2 - днище; 3 - корпус; 4 - напорная камера; 5 - отверстие решетки; 6 - решетка; 7 - центральный отводящий канал; 8 - цилиндрическая обечайка.

Напорная камера содержит цилиндрический корпус 3 с днищем 2, цилиндрическую обечайку 8 и решетку 6.

Цилиндрическая обечайка 8 установлена коаксиально корпусу 3 и разделяет его полость на сообщенные между собой центральный отводящий 7 и боковой кольцевой подводящий 1 каналы.

Решетка 6 размещена в центральном отводящем канале 7.

Коэффициент пористости решетки 6 соответствует диапазону от 0,05 до 0,7. Соотношения размеров напорной камеры 4 соответствуют следующим условиям:

напорная камера, патент № 2525857

напорная камера, патент № 2525857

напорная камера, патент № 2525857

напорная камера, патент № 2525857

напорная камера, патент № 2525857

где r1 - максимальный радиус перфорированной части решетки 6, м; H - высота напорной камеры 4, м; r3 - наружный радиус цилиндрической обечайки 8, м; h - высота входа в напорную камеру 4, м; r4 - внутренний радиус корпуса 3, м; r2 - внутренний радиус цилиндрической обечайки 8, м.

Размеры проточной части напорной камеры 4 выбирают с учетом гидродинамических характеристик ее проточной части по следующему соотношению

напорная камера, патент № 2525857

где М - массовый расход рабочей среды в отверстии 5 решетки 6, кг/с; напорная камера, патент № 2525857 - средний массовый расход рабочей среды в отверстии 5 решетки 6, кг/с; напорная камера, патент № 2525857 - коэффициент гидравлического сопротивления решетки; напорная камера, патент № 2525857 P - полные потери напора на прокачку рабочей среды через решетку 6, Па; напорная камера, патент № 2525857 - средняя плотность рабочей среды, кг/м3; напорная камера, патент № 2525857 - средняя скорость рабочей среды в отверстиях 5 решетки 6, м/с;

напорная камера, патент № 2525857 - относительная площадь поперечного сечения струи; H - высота напорной камеры (4), м;

напорная камера, патент № 2525857 - высота струи рабочей среды во входной части напорной камеры 4, м; r3 - наружный радиус цилиндрической обечайки 8, м; h - высота входной части напорной камеры 4, м; r4 - внутренний радиус корпуса 3, м; n - число отверстий 5 в решетке 6; r0 - радиус отверстия 5 решетки 6, м; r - текущий радиус решетки 6, м; r1 - максимальный радиус перфорированной части решетки 6, м.

Использованные в соотношениях (1÷6) обозначения конструктивных элементов напорной камеры 4 представлены на фигуре.

Соотношения по определению гидродинамических неравномерностей на выходе из осесимметричной напорной камеры 4 разработаны с учетом закона сохранения массы в предположении о постоянстве теплофизических свойств рабочей среды и струйном характере ее течения.

При выводе расчетных соотношений приняты следующие предположения.

Движущаяся вдоль днища 2 плоская полузатопленная струя после поворота в центре напорной камеры 4 преобразуется в круглую затопленную струю.

При движении плоской полузатопленной струи вдоль днища 2 после участка стабилизации, кольцевой полузатопленной струи вдоль корпуса 3 и круглой затопленной струи в основном объеме напорной камеры 4 происходит увеличение площади их поперечного сечения, сопровождающееся уменьшением скорости рабочей среды в ней.

Угол одностороннего расширения полузатопленных струй составляет 12°.

При попадании струи на решетку 6 одна часть потока входит в отверстия 5 решетки 6, расположенные в месте встречи струи, другая растекается вдоль решетки 6 с изменением расхода по пути.

Соотношение (1) соответствует условию попадания внутренней боковой поверхности круглой затопленной струи на решетку 6, соотношение (2) - условию формирования падающей на решетку 6 круглой затопленной струи, а соотношение (5) - условию преобразования кольцевой полузатопленной струи в круглую затопленную струю в основном объеме напорной камеры 4 в результате обратного потока.

Течение рабочей среды в проточной части напорной камеры 4 осуществляется следующим образом.

Рабочая среда через боковой кольцевой подводящий канал 1 выходит в напорную камеру 4, изменяет в ней направление движения, попадает на решетку 6 и через ее отверстия 5 выходит в цилиндрический отводящий канал 7.

Пример конкретного выполнения напорной камеры

Напорная камера 4 имеет следующие соотношения размеров: H-h=0; r1/r4=0,87; r2/r4 =0,95; r3/r4=0,97; h/r4=0,15; H/r4=0,15. Коэффициент пористости решетки 6 (напорная камера, патент № 2525857 ) равен 0,10. При этом числа Рейнольдса в боковом кольцевом подводящем канале 1 и отверстии 5 решетки 6 равны соответственно 2,11·104 и 1,12·103, а коэффициент напорная камера, патент № 2525857 =13,2. В результате сопоставления результатов расчета по соотношению (6) с опытными данными, полученными для напорной камеры 4, отвечающей условиям (1)÷(5), установлено, что отличие расходов М не превышает ±10%.

Класс G21C15/02 устройство и расположение каналов для передачи тепла теплоносителю, например для циркуляции теплоносителя через опоры топливных элементов 

распределительная камера -  патент 2526837 (27.08.2014)
канал технологический -  патент 2173896 (20.09.2001)
корпус канала ядерного реактора -  патент 2084024 (10.07.1997)
ядерный реактор -  патент 2025799 (30.12.1994)
Наверх