способ формирования микроструктуры эвтектического al-si сплава
Классы МПК: | C22F1/043 сплавов с кремнием в качестве следующего основного компонента |
Автор(ы): | Аникина Валентина Ильинична (RU), Жереб Владимир Павлович (RU), Аникин Алексей Игоревич (RU), Бурлуцкая Дарья Михайловна (RU), Ковалева Ангелина Адольфовна (RU) |
Патентообладатель(и): | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU) |
Приоритеты: |
подача заявки:
2013-04-23 публикация патента:
20.08.2014 |
Изобретение относится к металлургии, в частности к способу термообработки алюминиево-кремниевого сплава эвтектического состава. Сплав нагревают с печью до температуры на 5-7°C выше температуры эвтектического равновесия сплава, выдерживают сплав при этой температуре в течение 120-150 мин, затем проводят охлаждение с печью до температуры 420-430°C со скоростью 0,01-0,03 град/с и охлаждение в воде до комнатной температуры. В результате термообработки в сплаве формируется микроструктура, в которой отсутствуют иглообразные кристаллы кремния и состоящая из многогранных кристаллов кремния, распределенных равномерно в матрице твердого раствора на основе алюминия. 3 ил.
Формула изобретения
Способ термообработки эвтектического алюминий-кремниевого сплава, включающий нагрев, выдержку и охлаждение, отличающийся тем, что нагрев проводят в печи до температуры на 5-7°C выше температуры эвтектического равновесия с последующей выдержкой при этой температуре в течение 120-150 мин, затем осуществляют охлаждение с печью до температуры 420-430°C со скоростью 0,01-0,03 град/с с последующим охлаждением в воде до комнатной температуры.
Описание изобретения к патенту
Изобретение относится к металлургии. Преимущественно изобретение может быть использовано при термической обработке цветного сплава - эвтектического силумина.
Известен способ термической обработки, основой которого является термоциклическая обработка (ТЦО) (Биронт B.C., Аникина В.И., Ковалева А.А. Дилатометрический анализ структурных превращений в алюминиево-кремниевых сплавах при термоциклической обработке // Журнал СФУ; сер. Техника и технологии. 2009. Т.2. Вып.4. С.384-393).
При ТЦО наблюдается дробление хрупких фазовых составляющих эвтектического кристалла за счет деления на отдельные частицы, распределенные в пластичной матрице твердого раствора на основе алюминия.
Однако использование ТЦО не позволяет получить в эвтектическом алюминиево-кремниевом сплаве структуру, состоящую из крупных компактных кристаллов кремния равномерно распределенных в твердом растворе на основе алюминия. Кроме того отрицательной стороной ТЦО является большая трудоемкость процесса.
Наиболее близким по совокупности существенных признаков к предлагаемому способу изменения морфологии микроструктуры сплава и расположения в ней эвтектиктических фаз является сфероидизирующий отжиг, осуществляемый при двухступенчатом нагревании (1-я ступень - до температуры, лежащей ниже неравновесного солидуса; 2-я ступень - до температуры ниже равновесного солидуса). Для большинства литейных промышленных силуминов температура равновесного солидуса составляет 500-550°C (Золоторевский В.С., Белов П.А. Металловедение литейных алюминиевых сплавов. - М.: Металлургия. 2005. С.346).
Основным недостатком известного способа является неполная сфероидизация при нагревании, вызванная наличием гладких поверхностей частиц кремния с пластинчатой морфологией, которую наблюдают в микроскопе в виде иглообразной формы.
Задачей изобретения является получение микроструктуры неэвтектического типа в эвтектическом силумине, которая достигается путем термообработки сплава, включающей нагрев, выдержку и охлаждение. Согласно изобретению нагрев проводят в печи на 5-7°C выше температуры эвтектического равновесия с последующей выдержкой в течение 120-150 мин, затем охлаждают до температуры 420-430°C со скоростью 0,01-0,03 град/с и последующим охлаждением в воде до комнатной температуры.
Нагревание образца на 5-7°C выше температуры эвтектического равновесия приводит к частичному межфазному оплавлению, а ниже заявленного диапазона температур, не достигается необходимый уровень диффузии для укрупнения кремниевых частиц.
Выдержка 120-150 мин обеспечивает протекание контактного плавления в сплаве на межфазных границах. Уменьшение длительности выдержки приводит к структуре игольчатой формы кремниевых кристаллов. Использование более длительного времени выдержки не приводит к значительным результатам изменения в микроструктуре образца.
Охлаждение с печью до температуры 420-430°C со скоростью 0,01-0,03 град/с приводит к полной гетерогенизации кремния в твердом растворе за счет осуществления диффузионных процессов и формирования в микроструктуре образца компактных ограненных кристаллов кремния.
Охлаждение в воде до комнатной температуры предотвращает диффузионные процессы и позволяет зафиксировать образовавшееся распределение фаз.
Способ осуществляется следующим образом:
Отливают образец из сплава Al-11,7% Si (Фиг.1 - микроструктура в литом состоянии, х320) помещают в металлический контейнер и засыпают песком для того, чтобы избежать деформирования и окисления.
Термообработку - нагревание и выдержку - осуществляют при температурах, лежащих в жидкофазной области (фиг.3-а, обозначение 1 на диаграмме равновесия Al-Si), при выдержке продолжительностью 120-150 мин, на межфазных границах происходит преимущественный рост кремниевых кристаллов, путем захвата гетерофазного комплекса атомов кремния.
Охлаждение с печью до температуры 420-430°С (фиг.3-а, обозначение 2 на диаграмме равновесия Al-Si) приводит к наиболее полной гетерогенизации кремния в твердом растворе. Последующее охлаждение в воде сохраняет в закаленном образце гетерогенную структуру, предотвращая диффузионное перераспределение компонентов.
Отличие сфероидизирующего отжига от предлагаемого способа заключается в том, что нагревание образцов и их термообработка происходят при температурах, лежащих в области твердых растворов (фиг.3-б, обозначение 1' и 2' на диаграмме равновесия Al-Si). Именно нагрев выше точки эвтектического равновесия способствует более быстрому прохождению диффузионных процессов, связанных с переносом в жидкофазной области ГФКА кремния из матрицы твердого раствора на основе алюминия.
Использование предлагаемого способа позволяет получать микроструктуру, с отсутствием в ней иглообразных кристаллов кремния.
Техническим результатом заявленного изобретения является разделение микроструктуры эвтектического сплава на отдельные составляющие и объединение этих составляющих, в частности, частиц кремния между собой. В структуре эвтектического силумина после предлагаемой термообработки образуются крупные кремниевые кристаллы, практически равномерно распределенные в алюминиевом твердом растворе (микроструктура образца после термообработки, предложенной в изобретении, фиг.2 при - х320).
Класс C22F1/043 сплавов с кремнием в качестве следующего основного компонента