способ модифицирования литых сплавов

Классы МПК:C22B9/10 с использованием рафинирующих средств или флюсов; использование материалов для этой цели
C22C1/06 с применением особых средств для рафинирования или раскисления 
Автор(ы):, ,
Патентообладатель(и):Новомейский Михаил Юрьевич (RU)
Приоритеты:
подача заявки:
2012-12-24
публикация патента:

Изобретение относится к металлургии, точнее к производству литейных сплавов, преимущественно цветных сплавов, и может быть использовано для получения отливок повышенного качества. В способе осуществляют введение в расплав модифицирующей смеси, в качестве которой используют порошки оксидов d-металлов различной дисперсности 10-20 нм и 100-1000 нм, ультрадисперсный порошок оксида алюминия и порошок щелочных металлов и их соединений при соотношении суммы оксидов d-металлов и ультрадисперсного порошка оксида алюминия 25:(1-2) вес.%, при этом модифицирующую смесь вводят в количестве 0,01-0,25% от массы шихты. В качестве d-металлов используют цирконий, титан, ниобий, тантал, гафний по отдельности и в любом сочетании. Изобретение позволяет получать отливки, обладающие высокой герметичностью при дополнительном повышении прочности и пластичности. 2 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ модифицирования сплавов на основе алюминия, включающий расплавление шихты и введение в расплав модифицирующей смеси, отличающийся тем, что в качестве модифицирующей смеси используют порошки оксидов d-металлов различной дисперсности 10-20 нм и 100-1000 нм, ультрадисперсный порошок оксида алюминия и порошок щелочных металлов и их соединений при соотношении суммы оксидов d-металлов и ультрадисперсного порошка оксида алюминия 25:(1-2) вес.%, при этом модифицирующую смесь вводят в количестве 0,01-0,25% от массы шихты.

2. Способ по п.1, отличающийся тем, что в качестве d-металлов используют цирконий, титан, ниобий, тантал, гафний по отдельности и в любом сочетании.

3. Способ по п.1, отличающийся тем, что в качестве щелочных металлов и их соединений используют криолит.

Описание изобретения к патенту

Изобретение относится к металлургии, точнее к литейному производству сплавов на основе алюминия, и может быть использовано для получения отливок повышенного качества с улучшенными технологическими, эксплуатационными и физико-механическими характеристиками в условиях производства в литейных цехах машиностроительных предприятий.

Известно, что при литье металлов и сплавов в основном применяют примесное модифицирование. Однако такие модификаторы недостаточно универсальны, неэкологичны и обладают малым временем живучести - большинство примесных модификаторов химически активны, небезопасны для здоровья человека и требуют применения дорогостоящих вентиляционных и очистных систем. Для активизации примесного модифицирования наиболее перспективно использование модификаторов с более дисперсной микроструктурой, например, путем измельчения фазовых составляющих модификаторов до нанометровых размеров для получения коллоидных металлических растворов, обеспечивающих повышение температуры модифицирования; при этом увеличивается скорость растворения модификаторов и повышается их эффективность [В.Ю. Стеценко, Е.И. Марукович. Активизация процессов модифицирования металлов и сплавов. Литейное производство. - 2006. - № 11. - С.2-6].

Как и в предлагаемом способе, способ-аналог предполагает использование натрийсодержащих флюсов, но в таких рекомендуемых составах и концентрации входящих в них компонентов, что эти модификаторы нейтрализуют друг друга и не обеспечивают получение должного эффекта.

Известен способ получения модифицированных силуминов с использованием флюса из галоидных солей, содержащих эвтектику KCl-NaCl с добавками NaF, включающий загрузку исходной шихты в предварительно нагретый солевой расплав модифицирующей смеси, выдержку полученного расплава под слоем солей с последующим извлечением сплава и повторением цикла, при этом нагрев солевого расплава осуществляют до 770-790°C, в него последовательно загружают исходную шихту и лигатуру на основе алюминия с легирующими, выбранными из группы медь, кремний, титан, цирконий, и выдерживают полученный расплав при этой температуре в течение 10-30 мин, затем температуру снижают до 700-720°С и вводят магнийсодержащую лигатуру; при этом используют исходную шихту, содержащую до 40 мас.% оборотных отходов собственного производства или вторичного силумина, лигатуру Al-Cu, содержащую 38-40 мас.% меди, лигатуру Al-Ti, содержащую не менее 2 мас.% титана, лигатуру Al-Zr, содержащую не более 0,6 мас.% циркония [Патент РФ № 2177948, кл. C22C 1/02, C22B 9/10, 2000 г.].

Известный аналог, как и в предлагаемом способе, включает одинаковые компоненты в различной концентрации с близким по технологии введением лигатур в расплав и обеспечивает улучшение технологических и потребительских свойств модифицированных сплавов, однако не позволяет получить достаточной герметичности отливок.

Наиболее близким по технической сущности и решаемой задаче является способ модифицирования алюминиевых сплавов, включающий расплавление шихты и введение в расплав модификатора в присутствии криолита; при этом в качестве модификатора используют смесь карбидо-, нитридообразующих элементов и оксиды алюминия и меди при соотношении элементов и оксидов 30-70:0,1-0,5 и щелочных и/или щелочноземельных металлов и их соединений в количестве 0,02-0,20% от массы сплава, причем соотношение оксидов алюминия и меди составляет 100:0,01-0,02%; при этом в качестве карбидо-, нитридообразующих элементов используют оксиды циркония, титана, ниобия, гафния, тантала по отдельности или в любом сочетании, а в качестве щелочных и/или щелочноземельных металлов и их соединений используют криолит [Патент РФ № 2016112, кл. C22C 1/06, C22B 9/10, 1992 г.].

Известный аналог, который принят за прототип, включает в состав компоненты, в значительной степени совпадающие с предложенным изобретением по составу и частично по концентрации; однако известный способ недостаточно универсален, технологичен, надежен с точки зрения экологии.

В основу изобретения положена задача путем использования для модифицирования литейных сплавов нового набора компонентов по составу и концентрации получить отливки, обладающие высокой герметичностью при дополнительном повышении прочности и одновременно пластичности.

При этом в качестве модифицирующей смеси используют порошки высших оксидов d-металлов различной дисперсности, а также ультрадисперсного порошка оксида алюминия при соотношении суммы оксидов d-металлов и ультрадисперсного порошка оксида алюминия 25:(1-2) вес.%, а также щелочных металлов и их соединений, причем в качестве соединений высших оксидов d-металлов используют как порошки дисперсностью 10-20 нм, так и 100-1000 нм, а в качестве d-металлов используют цирконий, титан, ниобий, тантал, гафний по отдельности и в любом сочетании, в качестве щелочных металлов и их соединений используют криолит.

Сопоставительный анализ предлагаемого технического решения и аналогов, включая прототип, позволяет сделать вывод о том, что заявленный способ модифицирования литейных сплавов отличается тем, что в качестве модифицирующей смеси используют смесь высших оксидов d-металлов в виде ультрадисперсных соединений, полученных путем термического или термохимического синтеза (например, Плазмохимический синтез ультрадисперсных порошков и их применение для модифицирования металлов и сплавов (Сабуров В.П., Черепанов А.Н., Жуков М.Ф., Галевский Г.В., Крушенко Г.Г., Борисов В.Т.; Росийская академия наук, Сибирское отделение, Институт теплофизики; ответственный редактор Фомин В.М., Черепанов А.Н. - Новосибирск: Наука, 1995. - 344 с.), и дополнительно таких же соединений, полученных методами механического измельчения либо другим путем (воздействием электрического тока, лазерным и/или электронным лучем и другими).

Модифицирующую смесь вводят в количестве 0,01-0,25% от массы шихты. Некоторые компоненты - d-металлы и их соединения, оксиды алюминия, щелочные и щелочноземельные металлы и их соединения - известны из существующего уровня техники (смотри аналоги и прототип), однако в предлагаемом техническом решении они вводятся в составе других компонентов, что соответствует новому качественному составу и в других соотношениях, следовательно, отвечают другим количественным соотношениям.

Высокий эффект модифицирования предложенной смесью определяется тем, что в расплаве после введения смеси вблизи температур ликвидуса происходит диссоциация оксидов d-металлов с последующим образованием интерметаллидов коллоидальной дисперсности, которые в процессе последующей кристаллизации играют роль центров кристаллизации и обеспечивают интенсивное измельчение структуры и субструктуры. При этом степень химической и структурной неравновесности компонентов модифицирующей смеси - оксидов d-металлов, алюминия, щелочных металлов - обеспечивает высокую динамику процесса кристаллизации, значительно превышающую таковую в условиях прототипа, а смещение ликвидуса и солидуса модифицированного расплава в область высоких температур и дальнейшее сужение интервала кристаллизации становятся более выраженными.

Использование в составе предлагаемой модифицирующей смеси оксидов d-металлов, полученных методом термосинтеза, существенно увеличивает однородность элементов субструктуры, особенно локализацию включений внутри субзерен и на граничных участках; значительно увеличивается площадь межзеренной поверхности, также положительный эффект дает воздействие зон вакансий, морфологию и топологию этих зон на физико-механические и теплофизические характеристики субмикроструктуры модифицированных литых сплавов.

Соотношение ультрадисперсных порошков, полученных методом термосинтеза, и порошков, полученных с использованием известных методов измельчения в составе предлагаемой модифицирующей смеси может быть различным: размеры первых порошков составляют 10-20 нм, а вторых, на порядок крупнее - 100-1000 нм, но т.к. действие их на механизм кристаллизации определяется высокой равномерностью предварительного взаимного перемешивания всех компонентов смеси с сохранением топографии компонентов при введении в расплав, обеспечивающей получение модулированной субструктуры сначала на более дисперсной части зародышей кристаллизации, когда диффузионные процессы существенно облегчены в силу теплофизических характеристик расплава, а затем, в условиях обеднения расплава (твердого раствора) по основным элементам, на менее дисперсной части. Этим же обстоятельством определяется выбор конкретного соотношения порошков, включенных в состав предлагаемой модифицирующей смеси: изменение этого соотношения в сторону большей дисперсности приводит к ухудшению пластичности отливки, а в меньшую - не достигаются максимальные прочностные характеристики отливок.

Пример. В раздаточной электрической печи сопротивления типа CAT 0,25 в соответствие с расчетом шихты загружали компоненты для получения алюминиевого сплава АК7 ч. После расплавления шихты и доводки расплава по химическому составу в расплав при температуре 700-780°С вводили модифицирующую смесь под «колокольчиком» максимально близко к дну тигля.

Обработку проводят до окончания барботажа, затем «колокольчик» удаляют и снимают шлак с поверхности расплава.

Таким образом выплавляли серию сплавов, в которых варьировали количество вводимой модифицирующей смеси и ее состав.

Для сравнения одну из плавок модифицировали по методике патента РФ № 2016112 (прототип).

Полученный сплав имел химический состав, мас.%: марганец 0,48-0,50; медь 0,07-0,09; цинк 0,09-0,18; магний 0,02-0,4; железо 0,9-1,2; свинец 0,02-0,04; олово 0,006-0,010; кремний 10-12,3; алюминий - остальное.

Испытания физико-механических и технологических характеристик выполнялись на образцах, полученных в металлических формах по стандартным методикам. Гидроиспытания проводили под давлениям 5 кГс/см2 на деталях типа «кронштейн», полученных методом литья под давлением.

Результаты испытаний образцов из сплава АК7 ч после различных вариантов модифицирования приведены в таблицах 1 и 2.

Таблица 1
№ № плавокКол-во модиф. смеси (% от массы шихты)Состав модифицирующей смеси, мас.%
ZrO 2Tio2 HfO2Nb2O5 Ta2O5 Al2O3Na3 AlF6
02/1 0.0155 555 0.05Остальное
02/2- 25-- -
02/35 10- 10-
02/4 215 -8-
03/10,02 67 5-5 0,1способ модифицирования литых сплавов, патент № 2525967
03/2 810- 8-
03/3 -15 -8- способ модифицирования литых сплавов, патент № 2525967
03/4 520- 10-
04/1 0,1350 -- --0,15 способ модифицирования литых сплавов, патент № 2525967
04/2 -50- --
04/3 -- 50--
04/4- --50 -
05/1- -- -400,3 способ модифицирования литых сплавов, патент № 2525967
05/2 --- --
05/3 1515 8124
05/410 23-10 -
05/515 25- 84
05/6 -40 -10-
06/10,25 4030 -10- 0,5способ модифицирования литых сплавов, патент № 2525967
06/2 5-- 70-
06/3 -50 -105
06/40,28 -40 -155 0,5способ модифицирования литых сплавов, патент № 2525967
06/5 -50- 10-
06/6 30- -510
07/10,05 --- --0,05 -
07/20,08 -- --- 0,08-
07/0 (прототип)0,1010 122 950,3 остальное
Примечание: соотношение оксидов d-металлов и оксида алюминия 100:0,015 во всех плавках, кроме 07/1, 07/2, где оксид алюминия соответствует концентрации неизбежных примесей.

Таблица 2
№ № плавокХарактеристики плавок
Предел прочности, МПа Относительное удлинение, % Плотность металла отливки, Г/см3 Объем брака отливок по герметичности, %
02/14202,8 1,9028
02/2 4002,9 1,7032
02/3 4202,8 1,9032
02/4 4302,8 1,7030
03/1 4452,7 3,705
03/2 4452,7 3,705
03/3 4402,8 4,006
03/4 4502,6 4,004
04/1 4302,5 3,803
04/2 4402,5 3,803
04/3 4502,5 4,004
04/4 4502,6 4,003
05/1 4502,9 3,902
05/2 4402,8 4,003
05/3 4502,9 4,103
05/4 4102,9 4,102
05/5 4002,9 4,203
05/6 3902,8 3,808
06/1 4302,7 3,908
06/2 4202,7 3,806
06/3 4392,6 3,806
06/4 4302,4 3,908
06/5 4302,4 3,908
06/6 4202,3 3,809
07/1 4001,4 2,1040
07/2 3901,3 2,0043
07/0 (прототип)4302,9 4,0012
Примечание: образцы испытывались в литом состоянии. Брак по герметичности оценивался по данным испытаний 100-110 деталей.

Класс C22B9/10 с использованием рафинирующих средств или флюсов; использование материалов для этой цели

способ переработки электронного лома -  патент 2521766 (10.07.2014)
способ получения флюса для плавки и рафинирования магния или его сплавов -  патент 2492252 (10.09.2013)
флюс для электрошлакового переплава -  патент 2487173 (10.07.2013)
способ очистки висмута от полония -  патент 2478128 (27.03.2013)
способ модифицирования алюминиево-кремниевых сплавов -  патент 2475550 (20.02.2013)
способ химической очистки расплавленного хлорида магния от примесей для электролитического получения магния -  патент 2427670 (27.08.2011)
способ раскисления и рафинирования расплавленной стали -  патент 2423531 (10.07.2011)
расплавленные соли для очистки стронцийсодержащих магниевых сплавов -  патент 2417266 (27.04.2011)
способ получения флюса для плавки и рафинирования магния или его сплавов -  патент 2407813 (27.12.2010)
печь непрерывного рафинирования магния -  патент 2400685 (27.09.2010)

Класс C22C1/06 с применением особых средств для рафинирования или раскисления 

способ рафинирования алюминиевых сплавов -  патент 2522997 (20.07.2014)
состав для модифицирования и рафинирования железоуглеродистых и цветных сплавов (варианты) -  патент 2502808 (27.12.2013)
способ модифицирования алюминиево-кремниевых сплавов -  патент 2475550 (20.02.2013)
способ получения модификатора для доэвтектических алюминиево-кремниевых сплавов -  патент 2475334 (20.02.2013)
способ получения слитков из алюминиевых сплавов, содержащих литий -  патент 2463364 (10.10.2012)
флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий -  патент 2451762 (27.05.2012)
флюс для защитного покрытия расплава латуни -  патент 2440868 (27.01.2012)
расплавленные соли для очистки стронцийсодержащих магниевых сплавов -  патент 2417266 (27.04.2011)
способ рафинирования алюминиевых сплавов -  патент 2396365 (10.08.2010)
флюс для защитного покрытия расплава латуни -  патент 2356967 (27.05.2009)
Наверх