способ получения альдегидов

Классы МПК:C07C47/02 насыщенные соединения, содержащие -CHO группы, связанные с ациклическими атомами углерода или водородом 
C07C45/50 реакциями оксосинтеза
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество "Нефтяная компания "Роснефть" (RU)
Приоритеты:
подача заявки:
2013-03-28
публикация патента:

Изобретение относится к способу получения альдегидов гидроформилированием терминальных или внутренних олефинов в присутствии каталитической системы, содержащей родий и моно- или полифосфитный лиганд. При этом в реакционную смесь добавляют антиоксидант, в качестве которого используют фенолы или тиомочевины, общих формул:

способ получения альдегидов, патент № 2527455 ,

где R - одинаковые или различающиеся алифатические или ароматические одновалентные радикалы или водород, а гидроформилирование проводят в жидкой фазе в среде растворителя, в качестве которого используют альдегид, при концентрации родия 0,1-2 ммоль/л, при температуре 20-150°C и давлении 0,2-5 МПа, при этом количество антиоксиданта составляет 1-30 моль на 1 моль фосфитного лиганда. Изобретение позволяет эффективным способом получить целевые продукты при снижении расходов на сырье. 2 табл., 15 пр.

Формула изобретения

Способ получения альдегидов гидроформилированием терминальных или внутренних олефинов в присутствии каталитической системы, содержащей родий и моно- или полифосфитный лиганд, отличающийся тем, что в реакционную смесь добавляют антиоксидант, в качестве которого используют фенолы или тиомочевины, общих формул:

способ получения альдегидов, патент № 2527455 ,

где R - одинаковые или различающиеся алифатические или ароматические одновалентные радикалы или водород, а гидроформилирование проводят в жидкой фазе в среде растворителя, в качестве которого используют альдегид, при концентрации родия 0,1-2 ммоль/л, при температуре 20-150°C и давлении 0,2-5 МПа, при этом количество антиоксиданта составляет 1-30 моль на 1 моль фосфитного лиганда.

Описание изобретения к патенту

Изобретение относится к основному органическому, тонкому органическому и нефтехимическому синтезу и может быть использовано для гидроформилирования олефинов в соответствующие альдегиды.

Гидроформилирование линейных олефинов является промышленным крупнотоннажным процессом получения альдегидов и продуктов на их основе. Одним из вариантов проведения процесса является гидроформилирование олефинов на гомогенных родиевых катализаторах, модифицированных фосфитными лигандами. Наряду с преимуществами подобные каталитические системы имеют ряд недостатков - высокая стоимость Rh и лигандов, высокая реакционная способность лигандов в нежелательных деструктивных процессах. Появление в реакционной среде кислот, воды, кислорода и других химически активных соединений приводит к стремительной деградации триорганофосфитов. Существует несколько путей превращения фосфитных лигандов - гидролиз с образованием кислых фосфитов, взаимодействие с альдегидами с дальнейшей перегруппировкой в альфа-гидроксифосфонаты, окисление (Applied Catalysis А, 2001, Т.212. С.61-81).

Несмотря на то что фосфитные лиганды считаются более устойчивыми к окислению по сравнению с фосфиновыми, это справедливо лишь в случае окисления молекулярным кислородом. В среде алифатического альдегида окисление лигандов идет со значительно большими скоростями, поскольку альдегид выступает в роли медиатора кислорода. При взаимодействии альдегида с кислородом образуются высокоактивные радикалы ацильного, гидропероксидного и других типов, а также перекиси (Успехи химии, 1985, Т.54. Вып.6. С.903-922), которые способны взаимодействовать с лигандом быстрее, чем молекулярный кислород, например (Успехи химии, 1971, Т.40. Вып.2. С.254-275):

RCHO+O2способ получения альдегидов, патент № 2527455 ·RC(O)OOH; (RO)3P+RC(O)OOHспособ получения альдегидов, патент № 2527455 RC(O)OH+(RO)3P=O.

По этим причинам к чистоте используемого сырья предъявляются высокие требования. Для подавления заметного окисления фосфитов содержание кислорода в сырье не должно превышать 1-10 ppm и менее. По этой причине для увеличения срока службы катализаторной композиции необходимы стадии глубокой очистки сырья от кислорода. Это приводит к удорожанию получаемых альдегидов и продуктов на их основе. К тому же в момент первоначального запуска процесса окисление лиганда не полностью удаленным из системы и сорбированным на оборудовании кислородом осуществляется особенно интенсивно.

В литературе описано несколько способов замедления деградации фосфитного лиганда посредством введения в реакционную смесь различных добавок. Однако, исходя из их химической сущности, они не решают проблем с окислением. Так, известен способ гидроформилирования олефинов (патент US 5364950) с добавками соединений, содержащих оксирановый цикл для связывания гидроксифосфонатов. Данные вещества позволяют инактивировать кислоты, образующиеся из фосфитов, но не обладают антиоксидантными свойствами.

Предложен способ нейтрализации кислот, образующихся из фосфитов, непрерывным пропусканием части потока катализаторного раствора через колонну с ионно-обменной смолой (патент US 4599206). Однако данный метод требует введения в процесс дополнительного оборудования, которое может быть источником сорбированного кислорода.

Известен способ получения альдегидов гидроформилированием олефинов (патенты US 5731472, US 5744650) с введением в реакционную смесь аминов или азотсодержащих гетероциклов, которые препятствуют автокаталитическому гидролизу фосфитов. Однако добавление аминов вызывает протекание побочных процессов, например олигомеризации альдегидов. Кроме того, амины не могут предотвратить окисление фосфита в растворе альдегида.

Имеются сведения о введении 2,6-дитретбутил-4-метилфенола в реакционную смесь гидроформилирования в качестве антиоксиданта (WO 195003702, US 4599206). Однако к какому техническому результату это приводит и как сказывается на стабильности фосфитного лиганда, не сообщается. В то же время известно, что недостаточно объемные моноядерные фенолы способны переэтерифицировать P-O-связи лигандов, разрушая их структуру, что особенно критично для полифосфитов и областей высоких температур (свыше 100-110°C). Это препятствует применению больших концентраций антиоксидантов подобного типа, которые необходимы для снижения требований к очистке сырья и достижения при этом продолжительного действия каталитического комплекса.

Для стабилизации дорогостоящих полифосфитов могут быть использованы монофосфины (US 6153800, US 2012/0029242). Однако добавление фосфинов вызывает снижение активности катализатора, причем для нивелирования этого эффекта требуется применение специфических и достаточно труднодоступных лигандов (как фосфиновых, так и фосфитных).

Задачей изобретения выступает создание эффективного способа получения альдегидов и снижения затрат на его осуществление за счет смягчения требований к качеству очистки сырья и уменьшения расхода дорогостоящего фосфорорганического лиганда.

Технический результат заключается в подавлении окисления фосфорорганического лиганда примесями кислорода в присутствии альдегидного продукта или растворителя, в результате чего деградация лиганда замедляется, срок службы каталитической системы продлевается и, следовательно, снижается ее расход. Одновременно снижаются требования к чистоте сырья и аппаратурному оформлению в части предотвращения контакта раствора катализатора с кислородом воздуха.

Технический результат достигается добавлением в реакционную среду при гидроформилировании олефинов на родиевом катализаторе, модифицированном фосфитными лигандами, антиоксидантов класса тиомочевин и объемных бисфенолов в количествах 1-30 эквивалентов по отношению к лиганду. Указанные антиоксиданты имеют общие формулы:

способ получения альдегидов, патент № 2527455 способ получения альдегидов, патент № 2527455 способ получения альдегидов, патент № 2527455

где R - одинаковые или различающиеся алифатические или ароматические одновалентные радикалы или водород. В качестве антиоксидантов из указанных формул могут использоваться тиомочевина, N-метил-N,Nспособ получения альдегидов, патент № 2527455 -дифенилтиомочевина, 2,2способ получения альдегидов, патент № 2527455 -метилен-бис(6-трет-бутил-4-метилфенол), 2,2способ получения альдегидов, патент № 2527455 -бис(4,6-ди-трет-бутилфенол) и др.

Представленные вещества выступают в роли радикальных ловушек, связывая образующиеся из альдегида и кислорода активные окислители, и таким образом препятствуют окислению фосфита. Например, осуществляются реакции:

способ получения альдегидов, патент № 2527455

Гидроформилирование олефинов может осуществляться при температурах 20-150°C, суммарном давлении водорода, окиси углерода и непредельного соединения 0,05-5 МПа, парциальном давлении водорода 0,01-3 МПа, парциальном давлении монооксида углерода 0,01-3 МПа.

Осуществление настоящего изобретения иллюстрируют приведенные ниже примеры.

Пример 1

Растворяют 33,36 мг дифосфитного лиганда А в 10 мл ацетона. Приготовленный раствор в количестве 1 мл на воздухе переносят в виалу объемом 4 мл, содержащую 2 мл ацетона, встряхивают и анализируют методом ВЭЖХ. Через 14 и 42 минуты концентрация фосфита в растворе не меняется и соответствует расчетной 1.11 мг/мл. Этот пример демонстрирует, что в растворе ацетона лиганд А устойчив к действию воздуха.

Лиганд А

способ получения альдегидов, патент № 2527455

Пример 2

Операции выполняют аналогично примеру 1 за исключением того, что в виалу вместо 2 мл ацетона помещают 2 мл свежеперегнанных бутиральдегидов (смесь н- и изобутираля с отношением н/изо ~1). Сразу после смешения растворов по ВЭЖХ исходный фосфит А не обнаруживается, причем наблюдаются пики, относящиеся к продуктам окисления одного или двух атомов фосфора. Этот пример показывает, что в присутствии альдегидов лиганд А подвергается быстрому окислению на воздухе.

Примеры 3-6

Операции выполняют аналогично примеру 2 за исключением того, что в бутиральдегид предварительно добавляют 13 моль на 1 моль фосфита А 2,2способ получения альдегидов, патент № 2527455 -метилен-бис(6-трет-бутил-4-метилфенол), N-метил-N,Nспособ получения альдегидов, патент № 2527455 -дифенилтиомочевины, тиомочевины или 2,2способ получения альдегидов, патент № 2527455 -бис(4,6-ди-трет-бутилфенола). Пробы анализируют методом ВЭЖХ через промежутки времени, указанные в таблице 1, находя количество оставшегося фосфита в % по отношению к его расчетной начальной концентрации (1.11 мг/мл). Результат представлен в таблице 1.

Примеры 3-6 показывают, что добавки антиоксидантов класса фенолов, тиомочевин и фосфинов замедляют окисление фосфитного лиганда в растворе альдегида.

Таблица 1
ПримерАнтиоксидант* N, %
Сразу после смешивания Через 14 мин после смешивания Через 42 мин после смешивания
2нет0 00
3 МВТВМР80 7975
4MDPTU~100 8859
5TU 725331
6BDTBP 988885
*МВТВМР=2,2способ получения альдегидов, патент № 2527455 -метилен-бис(6-трет-бутил-4-метилфенол), MDPTU=N-метил-N,Nспособ получения альдегидов, патент № 2527455 -дифенилтиомочевина, TU=тиомочевина, BDTBP=2,2способ получения альдегидов, патент № 2527455 -бис(4,6-ди-трет-бутилфенол).

N, %=100%*C/Co, где С - текущая концентрация фосфита в растворе, Co - начальная концентрация фосфита, рассчитанная на основании загрузки.

Сравнительный пример 1С

В стальной автоклав производства Parr Instrument объемом 100 мл, снабженный устройствами для термостатирования и перемешивания, в токе аргона помещают 20 мл смеси бутиральдегидов (н/изо ~1), 1,52 мг Rh(acac)(CO)2 и 50,33 мг лиганда A (A/Rh=10, [Rh]=0.3 ммоль/л). Автоклав продувают азотом (3*1,5 МПа) и нагревают до 90°С. После этого отбирают пробу жидкой фазы (1 мл), соответствующей раствору до начала реакции. Часть раствора (0,2 мл) помещают в виалу (0,3 мл), содержащую ~3 мг тиомочевины, и методом ВЭЖХ определяют долю не подвергшегося деградации свободного лиганда в % от теоретического количества, найденного на основании загрузки катализатора. Далее в автоклав вводят 3 мл пропилена, доводят общее давление до 2 МПа посредством подачи синтез-газа (H2/CO=1) и проводят процесс при постоянном давлении, находя начальную скорость реакции (TOF, моль альдегида на 1 моль Rh в час) по поглощению синтез-газа из калиброванной мерной емкости. По завершении поглощения синтез-газа, автоклав охлаждают, региоселективность гидроформилирования (SH) рассчитывают на основании ГЖХ-анализа исходной и результирующей смеси альдегидов. Долю не подвергшегося деградации лиганда определяют методом ВЭЖХ, как это указано выше. Результат представлен в таблице 2. Сравнительный пример 1С показывает, что в отсутствии антиоксиданта и без принятия специальных мер по предотвращению попадания кислорода в растворитель более 90% свободного дифосфитного лиганда распадается еще до начала реакции.

Сравнительный пример 2С

Все операции проводятся аналогично сравнительному примеру 1С за исключением того, что в автоклав в токе аргона сначала загружают катализатор, после чего автоклав вакуумируют масляным насосом до 0.1 Торр и по тонкому стальному капилляру вводят свежеперегнанный в атмосфере CO бутиральдегид. Загрузку осуществляют в токе CO без разгерметизации перегонной аппаратуры. Результат представлен в таблице 2. В сопоставлении с примером 1С сравнительный пример 2С показывает, что меры по предотвращению контакта альдегидного растворителя с кислородом воздуха в значительной степени замедляют деструкцию дифосфитного лиганда.

Примеры 7-9

Все операции проводятся аналогично сравнительному примеру 1С за исключением того, что перед загрузкой альдегидного растворителя в автоклав помещают антиоксидант (см. табл.2) в количестве 3 моль на 1 моль лиганда А. В сопоставлении со сравнительным примером 1С примеры 7-9 показывают, что добавление антиоксиданта предотвращает драматическое окисление свободного дифосфита при проведении гидроформилирования. В сопоставлении со сравнительным примером 2С видно, что антиоксидант практически не влияет на скорость и региоселективность целевой реакции.

Сравнительный пример 3С

В стальной автоклав производства Parr Instrument объемом 100 мл, снабженный устройствами для термостатирования и перемешивания, в токе аргона помещают 19 мл смеси бутиральдегидов (н/изо ~1), 1 мл раствора Rh(acac)(CO)2 в п-ксилоле, содержащий 0.517 мг указанного комплекса родия, и 38,86 мг лиганда Б (Б/Rh=30, [Rh] 0.1 ммоль/л). Автоклав продувают азотом (3*1,5 МПа) и нагревают до 90°C. После этого отбирают пробу жидкой фазы (1 мл), соответствующей раствору до начала реакции. Часть раствора (0,2 мл) помещают в виалу (0,3 мл), содержащую ~3 мг тиомочевины, и методом ВЭЖХ определяют долю не подвергшегося деградации свободного лиганда. Далее в автоклав вводят 8 мл пропилена, доводят общее давление до 2.1 МПа посредством подачи синтез-газа (H2/CO=1) и проводят процесс при постоянном давлении, находя начальную скорость реакции (TOF, моль альдегида на 1 моль Rh в час) по поглощению синтез-газа из калиброванной мерной емкости. По завершении поглощения синтез-газа автоклав охлаждают, региоселективность гидроформилирования (SH) рассчитывают на основании ГЖХ-анализа исходной и результирующей смеси альдегидов. Долю не подвергшегося деградации свободного лиганда определяют методом ВЭЖХ, как это указано выше. Результат представлен в таблице 2. Сравнительный пример 3С показывает, что в отсутствие антиоксиданта и без принятия специальных мер по предотвращению попадания кислорода в растворитель около 50% свободного монофосфитного лиганда распадается еще до начала реакции. Одновременно по ВЭЖХ фиксируется интенсивное образование продукта окисления - фосфата.

Лиганд Б

способ получения альдегидов, патент № 2527455

Пример 10

Все операции проводятся аналогично сравнительному примеру 3С за исключением того, что перед загрузкой альдегидного растворителя в автоклав помещают 2,2способ получения альдегидов, патент № 2527455 -метилен-бис(6-трет-бутил-4-метилфенол), (см. табл.2) в количестве 3 моль на 1 моль лиганда Б. В сопоставлении со сравнительным примером 3С пример 10 показывает, что добавление антиоксиданта значительно замедляет окисление свободного монофосфита.

Сравнительный пример 4С

В стальной автоклав производства Parr Instrument объемом 100 мл, снабженный устройствами для термостатирования и перемешивания, в токе аргона помещают 17 мл смеси бутиральдегидов (н/изо ~1), 3 мл раствора Rh(acac)(CO)2 в п-ксилоле, содержащего 7,78 мг указанного комплекса родия, и 195,11 мг лиганда Б (Б/Rh=10, [Rh] 1,5 ммоль/л). Автоклав продувают азотом (3*15 атм) и нагревают до 130°C. После этого отбирают пробу жидкой фазы (1 мл), соответствующей раствору до начала реакции. Часть раствора (0,2 мл) помещают в виалу (0,3 мл), содержащую ~3 мг тиомочевины, и методом ВЭЖХ определяют долю не подвергшегося деградации свободного лиганда. Далее в автоклав вводят 8 мл бутена-2, доводят общее давление до 3,5 МПа посредством подачи синтез-газа (H2/CO=1) и проводят процесс при постоянном давлении, находя начальную скорость реакции (TOF, моль альдегида на 1 моль Rh в час) по поглощению синтез-газа из калиброванной мерной емкости. По завершении поглощения синтез-газа автоклав охлаждают, региоселективность гидроформилирования (SH) рассчитывают на основании ГЖХ-анализа. Долю не подвергшегося деградации лиганда определяют методом ВЭЖХ, как это указано выше. Результат представлен в таблице 2. Сравнительный пример 4С показывает, что в отсутствие антиоксиданта и без принятия специальных мер по предотвращению попадания кислорода в растворитель около 50% свободного монофосфитного лиганда распадается еще до начала реакции.

Пример 11

Все операции проводятся аналогично сравнительному примеру 4С за исключением того, что перед загрузкой альдегидного растворителя в автоклав помещают 2,2'-бис(4,6-ди-трет-бутилфенол) (см. табл.2) в количестве 30 моль на 1 моль лиганда Б. В сопоставлении со сравнительным примером 4С пример 11 показывает, что добавление антиоксиданта предотвращает драматическое окисление свободного монофосфита и не ухудшает показатели процесса гидроформилирования внутреннего олефина.

Таблица 2
ПримерЛиганд Антиоксидант*Антиоксидант/лиганд TOF, ч-1 Sh**, %N*** , %
до реакции после реакции
АНет- 13100937 0
АНет- 144009692 50
7 АМВТВМР3 1330095 9954
8АTU 31140095 8749
9А MDPTU313000 9699 50
БНет- 587005549 40
10 БМВТВМР 36330057 8469
Б Нет-44130 3052 33
11 БBDTBP30 4628031 9793
*MBTBMP=2,2способ получения альдегидов, патент № 2527455 -метилен-бис(6-трет-бутил-4-метилфенол), MDPTU=N-метил,N,Nспособ получения альдегидов, патент № 2527455 -дифенилтиомочевина, TU=тиомочевина, BDTBP=2,2способ получения альдегидов, патент № 2527455 -бис(4,6-ди-трет-бутилфенол).
**Sh=100%×н/(н+изо), где н - выход линейного альдегида, изо - выход разветвленного альдегида.
***N, %=100%*C/Co, где C - текущая концентрация фосфита в растворе, Со - начальная концентрация свободного лиганда, рассчитанная на основании загрузки фосфита и родия.

Класс C07C47/02 насыщенные соединения, содержащие -CHO группы, связанные с ациклическими атомами углерода или водородом 

способ переработки жидкого потока после гидроформилирования -  патент 2486171 (27.06.2013)
способ прямой конверсии низших парафинов c1-c4 в оксигенаты -  патент 2485088 (20.06.2013)
способ гидроформилирования с усовершенствованным контролем над изомерами продуктов -  патент 2458906 (20.08.2012)
способ карбонилирования с добавлением пространственно-затрудненных вторичных аминов -  патент 2440325 (20.01.2012)
способ введения и регенерации кобальта в процессе гидроформилирования пропилена -  патент 2424224 (20.07.2011)
способ получения масляных альдегидов в присутствии немодифицированного кобальтового катализатора -  патент 2393145 (27.06.2010)
стабилизация процесса гидроформилирования -  патент 2388742 (10.05.2010)
способы радиофторирования биологически активных векторов -  патент 2363704 (10.08.2009)
способ регенерации кобальта из кобальтового шлама -  патент 2363539 (10.08.2009)
способ получения альдегидов c3-c21 -  патент 2354642 (10.05.2009)

Класс C07C45/50 реакциями оксосинтеза

способ переработки жидкого потока после гидроформилирования -  патент 2486171 (27.06.2013)
способ гидроформилирования с усовершенствованным контролем над изомерами продуктов -  патент 2458906 (20.08.2012)
способ переработки бутанольно-бутилформиатной фракции -  патент 2454392 (27.06.2012)
способ карбонилирования с добавлением пространственно-затрудненных вторичных аминов -  патент 2440325 (20.01.2012)
способ введения и регенерации кобальта в процессе гидроформилирования пропилена -  патент 2424224 (20.07.2011)
новые душистые соединения, метод их синтеза и применения -  патент 2412149 (20.02.2011)
способ получения масляных альдегидов в присутствии немодифицированного кобальтового катализатора -  патент 2393145 (27.06.2010)
способ дезактивации металлоорганического катализатора и реакторная система для его осуществления -  патент 2389715 (20.05.2010)
стабилизация процесса гидроформилирования -  патент 2388742 (10.05.2010)
способ регенерации кобальта из кобальтового шлама -  патент 2363539 (10.08.2009)
Наверх