способ измерения вектора гармонического сигнала
Классы МПК: | G01R17/00 Измерительные приборы, в которых осуществляется сравнение с эталонной величиной, например мостового типа |
Автор(ы): | Агамалов Юрий Рубенович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук (RU) |
Приоритеты: |
подача заявки:
2013-03-01 публикация патента:
10.09.2014 |
Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг 0 вектора гармонического сигнала S(t) с известным периодом Т, действующего совместно с сигналами субгармонических помех Pm(t)=Amsin(2 t/Tm+ 0m), где , значения периодов Tm которых тоже известны и кратны Т, определяют по соотношениям: A=[(p')2 +(p )2]1/2 и 0=arctg(p'/p ), где p', p - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения их измеряют путем частотозависимой дискретизации суммарного сигнала суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р множества и , где Т=(2k±1)T/4, a k=0,1,2, , которые формируют согласно условию: или , где t0 - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r m}, , ni=0,1,2, , а значения проекций р' и р получают по соотношениям: , , где K=1/H. Технический результат заключается в повышении точности измерения в реальном времени вектора гармонического сигнала с известным периодом, действующего совместно с сигналами субгармонических помех, значения периодов которых тоже известны.
Формула изобретения
Способ измерения вектора гармонического сигнала S(t)=Asin(2 t/T+ 0) с известным периодом T, действующего совместно с сигналами гармонических помех Pm(t)=Am sin(2 t/Tm+ 0m), где , значения периодов Tm которых тоже известны, согласно которому амплитуду А и начальный фазовый сдвиг 0 сигнала S(t) определяют, например, по соотношениям А=[(р')2+(р )2]1/2 и 0=arctg(p'/р ), где р', р - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения этих проекций измеряют путем частотозависимой дискретизации суммарного сигнала и суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р множества и , где Т=(2k±1)T/4, а k=0,1,2, , отличающийся тем, что при Tm, кратных Т, когда Tm/Т=rm, где rm=2,3, , множества и моментов времени и дискретных отсчетов сигнала (t) формируют согласно условию: или t, или , где t0 - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r m}, , ni=0,1,2, , а значения проекций p' и p получают по соотношениям: , , где К=1/Н.
Описание изобретения к патенту
Изобретение относится к области электроизмерительной техники и может быть использовано в средствах измерений пассивных и активных комплексных электрических величин, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических цепей, а также в векторных вольтметрах и спектроанализаторах.
Известен способ измерения параметров двухполюсников со сложными схемами замещения с помощью разветвленной мостовой цепи при воздействии на нее нескольких тестовых гармонических сигналов с разными частотами, разделяемых с помощью аналоговых фильтров (Шеремет Л.П. Принципы построения мостовых измерительных цепей для одновременного уравновешивания на нескольких частотах // Проблемы технической электродинамики, вып.54, Киев: Наукова думка, 1975. - С.14-19).
Данный способ позволяет производить измерения сложных объектов исследования одновременно на нескольких частотах, обеспечивая тем самым возможность получения информации о быстроизменяющихся параметрах таких объектов, а через них и о протекающих в этих объектах физических или химических процессах. Однако применяемые для разделения сигналов с разными частотами аналоговые фильтры имеют низкую избирательность, не позволяющую получить высокие помехоустойчивость и точность измерения, и обладают инерционностью, а также сложностью реализации, возрастающими по мере повышения их избирательности, что является недостатком способа.
Известен также, принятый автором за прототип, способ измерения вектора гармонического сигнала S(t)=Asin(2 t/T+ 0), действующего совместно с другими гармоническими сигналами Sm(t)Amsin(2 t/Tm+ 0m), где , в том числе помехами, имеющими, как и сигнал S(t), известные, но не кратные друг другу значения периодов (Tm и Т), согласно которому проекции р' и р сигнала S(t) на два ортогональных совпадающих с измеряемым сигналом по частоте вектора опорных сигналов, связанные с А и 0, например, соотношениями А=[(р')2 +(р )2]l/2и 0=arctg(p'/р ), измеряют путем выборки и суммирования дискретных отсчетов, или дискрет, суммарного сигнала с помощью мгновенных импульсов, действующих в моменты времени, образующие множества и , а значения проекций р' и р определяют по соотношениям и , где - нормирующий множитель, причем формируют с помощью пошаговой процедуры, начинающейся с произвольного начального момента t0, выступающего в качестве исходного множества, и получения на первом шаге дополнительного множества путем сдвига исходного на нечетное число полупериодов первого подавляемого сигнала или гармонической помехи, и далее получения на каждом последующем шаге дополнительного множества посредством сдвига полученного на предыдущем шаге множества на нечетное число nm полупериодов m-го подавляемого сигнала до тех пор, пока число шагов не станет равным М-1 (RU № 2377577 С1, 27.12.2009).
Недостатком данного способа является пониженная точность измерения в тех случаях, когда вместе с измеряемым гармоническим сигналом S(t) действуют субгармонические помехи - гармонические сигналы с периодом, кратным периоду S(t), подавление которых этим способом в общем случае не обеспечивается, в чем легко убедиться уже на примере совместного действия сигнала S(t) и одной нечетной субгармонической помехи, т.е. гармонического сигнала, частота которого в нечетное число раз меньше частоты сигнала S(t).
Техническим результатом изобретения является повышение точности измерения в реальном времени вектора гармонического сигнала S(t)=Asin(2 t/Т+ 0) с известным периодом Т, действующего совместно с сигналами субгармонических помех Pm(t)=Amsin(2 t/Tm+ 0m), где , периоды Tm которых тоже известны и кратны Т.
Технический результат достигается тем, что в предлагаемом способе измерения вектора гармонического сигнала S(t)=Asin(2 t/T+ 0) с известным периодом Т, действующего совместно с сигналами гармонических помех Pm(t)=Am sin(2 t/Tm+ 0m), где , значения периодов Tm которых тоже известны, согласно которому амплитуду А и начальный фазовый сдвиг 0 сигнала S(t) определяют, например, по соотношениям A=[(p')2+(p )2]1/2 и 0=arctg(p'/p ), где p', p - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения этих проекций измеряют путем частотозависимой дискретизации суммарного сигнала и суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р множества и , где Т=(2k±1)T/4, а k=0,1,2, , при Tm, кратных T, когда Tm/T=r m, где rm=2,3, , множества моментов времени и дискретных отсчетов сигнала (t) формируют согласно условию: или , или , где t0 - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r m}, , ni=0,1,2, , а значения проекций р' и р получают по соотношениям: , , где K=1/Н.
Сущность изобретения состоит в том, что примененная в нем процедура формирования множества моментов времени выборки дискретных отсчетов суммарного сигнала (t), позволяет точно и быстро (в реальном времени) измерять проекции p' и р гармонического сигнала S(t) инвариантно по отношению к действующим вместе с ним М гармоническим помехам Pm (t) при условии, что периоды этих помех кратны периоду измеряемого сигнала S(t), т.е. исключить или минимизировать в зависимости от точности информации о периодах сигналов Pm(t) и S(t) влияние таких помех на точность измерения р' и р , а значит, и на точность измерения А и 0 сигнала S(t).
Поясним математически механизм подавления сигналов Pm(t), сопутствующих измеряемому, и выведем фигурирующие в формуле изобретения соотношения.
Рассмотрим сначала простейший случай, когда вместе с сигналом S(t) действует лишь одна субгармоническая помеха P m(t). Суть механизма подавления помех заключается в том, что при кратном отношении периода Pm(t) к периоду S(t) в зависимости от точности информации о значениях периодов S(t) и помехи Pm(t) подавление последней осуществляют путем формирования множества моментов выборки дискретных отсчетов суммарного сигнала (t) согласно известному тригонометрическому соотношению:
где n=2,3, - число дискретных отсчетов синусоиды, а AS и 0,S - произвольные значения амплитуды и угла начального фазового сдвига синусоиды (или косинусоиды).
Соотношение (1) означает, что операция суммирования n дискретных отсчетов синусоиды ASsin[2 (i-1)/n+ 0,S], взятых через фазовые интервалы d, составляющие n-ые доли ее периода, равного (в радианах) 2 , т.е. при d= i- i-1=2 /n, где i=2 (i-1)/n, позволяет «обнулить» синусоиду инвариантно по отношению к AS и 0S. При этом нужно отметить, что с учетом свойства периодичности синусоиды значения i приобретают выражение общего вида: i=2 [(i-1)/n±k], где , a k=0,1,2, .
Применительно к форме записи помехи P m(t), соотношение (1) имеет вид:
где - значения моментов времени дискретизации сигнала (t), а n=rm.
В том, что соотношение (2) выполняется и помеха Pm(t) подавляется («обнуляется») при любых значениях Am и 0m, легко убедиться, приняв во внимание, что здесь Tm=nT=rmT, т.е. n=rm. После этого остается лишь убедиться в том, что сам измеряемый сигнал S(t) при этом не подавляется, для чего, с учетом эффекта подавления Pm(t), достаточно просуммировать при указанных значениях дискретные отсчеты (только) S(t), так как подвергающийся дискретизации (t) является суммой S(t) и «обнуляемого» P m(t):
Из этого выражения следует, что в данном случае р'=KrmAsin 0, т.е. значение проекции р' сигнала S(t) на опорный сигнал, в отличие от помехи Pm(t), не равно тождественно нулю и при этом усилено в rm раз, что имеет место благодаря тому, что интервалы между моментами выборки дискретных отсчетов S(t) кратны его периоду: , где l - целое число.
Перейдем теперь к рассмотрению общего случая. Для того чтобы имело место подавление М помех при отсутствии подавления S(t), необходимо, чтобы соотношение (2) выполнялось одновременно для всех помех Pm(t), т.е. при . Осуществить это возможно, если число N дискретных отсчетов (t), а значит, и S(t), сделать равным произведению М чисел при условии: , где l - целое число.
С геометрической точки зрения это означает, что если имеется отрезок, длина L которого кратна Т:L=TN, то на нем можно уложить целые числа , любого из (одинаковых) отрезков длиной Lj=r jT. Однако в общем случае это условие является слишком сильным, а необходимым и достаточным, согласно теории чисел, будет условие: N=Н, где Н - наименьшее общее кратное (множества) чисел rm.
Что касается значения нормирующего множителя K=1/Н, то оно следует из соотношения , а также условий: N=H и .
Итак, все соотношения, входящие в формулу изобретения, математически обоснованы.
Класс G01R17/00 Измерительные приборы, в которых осуществляется сравнение с эталонной величиной, например мостового типа