маслосистема авиационного газотурбинного двигателя с форсажной камерой

Классы МПК:F02C7/06 размещение опор; смазка
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" (RU),
Открытое акционерное общество "Авиационная холдинговая компания Сухой" (RU)
Приоритеты:
подача заявки:
2013-07-05
публикация патента:

Изобретение относится к области машиностроения и касается устройства маслосистемы авиационного теплонапряженного газотурбинного двигателя с форсажной камерой, устанавливаемого на сверхзвуковые маневренные самолеты. В маслосистеме для повышения эффективности охлаждения масла в топливомасляном теплообменнике используется хладоресурс топлива, поступающего в форсажную камеру сгорания при работе двигателя на форсажном режиме. Для этого топливомасляный теплообменник выполнен в виде двух секций, в которых топливные полости в теплообменных матрицах выполнены раздельными и подключенными к разным магистралям подвода топлива (в основную или форсажную камеры сгорания), а масляные полости сообщены между собой через управляемый двухпозиционный распределительный клапан. Технический результат изобретения - повышение надежности работы двигателя путем обеспечения стабильного давления в магистрали подачи масла при переключении режимов работы двигателя (с основного на форсажный и обратно), что достигается выравниванием гидравлических характеристик масляных трактов течения масла. 1 ил.

маслосистема авиационного газотурбинного двигателя с форсажной   камерой, патент № 2529280

Формула изобретения

Маслосистема авиационного газотурбинного двигателя с форсажной камерой, содержащая подключенный в магистраль подачи масла двухсекционный топливомасляный теплообменник с раздельными топливными полостями, сообщенными соответственно с магистралями подачи топлива в основную и форсажную камеры сгорания, и с масляными полостями, сообщенными между собой через управляемый двухпозиционный распределительный клапан, вход в который сообщен с выходом из масляной полости секции, топливная полость которой соединена с магистралью подачи топлива в основную камеру сгорания, а один из двух выходов сообщен с входом в масляную полость секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, другой выход из распределительного клапана и выход из масляной полости секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, сообщены в магистраль подачи масла, отличающаяся тем, что в масляную магистраль, напрямую сообщающую выход из распределительного клапана с магистралью подачи масла, установлен регулируемый дроссель, гидросопротивление которого выбрано пропорциональным гидросопротивлению участка, идущего от выхода из распределительного клапана через масляную полость секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, до места сообщения с магистралью подачи масла.

Описание изобретения к патенту

Изобретение относится к области машиностроения и касается устройства маслосистемы авиационного теплонапряженного газотурбинного двигателя с форсажной камерой, устанавливаемого на сверхзвуковые маневренные самолеты.

Известна маслосистема авиационного газотурбинного двигателя (ГТД) с форсажной камерой сгорания, содержащая подключенный в магистраль подачи масла за фильтроэлементом топливомасляный теплообменник (Бич М.М., Вейнберг Е.В., Сурнов Д.Н. Смазка авиационных газотурбинных двигателей. - М. Машиностроение, 1978 г., с.34, рис.3.1).

Недостатком известной маслосистемы является то, что для повышения эффективности охлаждения масла в топливомасляном теплообменнике не используется топливо, поступающее в форсажную камеру сгорания двигателя. Объясняется это тем, что форсажный режим работы двигателя кратковременный, теплонапряженный, связан с резким ростом удельного расхода топлива и включается в экстремальных условиях эксплуатации самолета. Другая трудность с использованием форсажного топлива заключается в том, что при выключении форсажа прекращается прокачка форсажного топлива в теплообменной матрице топливомасляного теплообменника, а горячее масло с температурой до 250°C продолжает циркулировать в ней, что приводит к перегреву находящегося в статичном положении топлива, имеющего температуру закоксовывания значительно ниже, чем у авиационных масел.

Указанные недостатки устранены в маслосистемах, использующих двухсекционные теплообменники, топливные полости в которых выполнены раздельными и сообщенными соответственно с магистралями подачи топлива в основную и форсажную камеры сгорания.

Одной из таких маслосистем является маслосистема газотурбинного двигателя с форсажной камерой, содержащая подключенный в магистраль подачи масла двухсекционный топливомасляный теплообменник с раздельными топливными полостями, сообщенными соответственно с магистралями подачи топлива в основную и форсажную камеры сгорания, и с масляными полостями, сообщенными между собой через управляемый двухпозиционный распределительный клапан, вход в который сообщен с отводом из масляной полости секции, топливная полость которой соединена с магистралью подачи топлива в основную камеру сгорания, а один из двух выходов сообщен с входом в масляную полость секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, другой выход из распределительного клапана и выход из масляной полости секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, сообщены в магистраль подачи масла (прототип - патент RU № 2117794, МПК F02C 7/06, опубл. 20.08.1998 г.).

К недостатку этой маслосистемы следует отнести низкую надежность работы из-за нестабильности давления в магистрали подачи масла при переключении режима работы двигателя с основного на форсажный и обратно. При включении форсажа давление в магистрали подачи масла проваливается на (0,3маслосистема авиационного газотурбинного двигателя с форсажной   камерой, патент № 2529280 0,5 кгс/см2), что приводит к ухудшению смазки и охлаждения опорных подшипников роторов компрессора и турбины, в то время как на этом теплонапряженном режиме указанные параметры необходимо поддерживать. Объясняется это тем, что при включении форсажа вступает в работу секция топливомасляного теплообменника, подключенная к магистрали подачи топлива в форсажную камеру сгорания, и путь масла к масляным форсункам значительно удлиняется, а гидравлические потери возрастают, что приводит к падению давления в магистрали подачи масла, следовательно, и на масляных форсунках. В значительной степени это вызвано тем, что на двигателе из-за больших трудностей при размещении агрегатов не удается обе секции теплообменника разместить близко друг к другу.

Задача изобретения заключается в повышении надежности работы двигателя путем обеспечения стабильного давления в магистрали подачи масла при переключении режимов работы двигателя (с основного на форсажный и обратно).

Указанная задача достигается тем, что в маслосистеме авиационного газотурбинного двигателя с форсажной камерой, содержащей подключенный в магистраль подачи масла двухсекционный топливомасляный теплообменник с раздельными топливными полостями, сообщенными соответственно с магистралями подачи топлива в основную и форсажную камеры сгорания, и с масляными полостями, сообщенными между собой через управляемый двухпозиционный распределительный клапан, вход в который сообщен с выходом из масляной полости секции, топливная полость которой соединена с магистралью подачи топлива в основную камеру сгорания, а один из двух выходов сообщен с входом в масляную полость секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, другой выход из распределительного клапана и выход из масляной полости секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, сообщены в магистраль подачи масла, согласно изобретению, в масляную магистраль, напрямую сообщающую выход из распределительного клапана с магистралью подачи масла, установлен регулируемый дроссель, гидросопротивление которого выбрано пропорциональным гидросопротивлению участка, идущего от выхода из распределительного клапана через масляную полость секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, до места сообщения с магистралью подачи масла.

Установка в масляную магистраль, напрямую сообщающую выход из распределительного клапана с магистралью подачи масла, регулируемого дросселя, гидросопротивление которого выбрано пропорциональным гидросопротивлению участка, идущего от выхода из распределительного клапана через масляную полость секции, топливная полость которой соединена с магистралью подачи топлива в форсажную камеру сгорания, до места сообщения с магистралью подачи масла, позволит выравнить гидравлические характеристики масляных трактов течения масла при переключении режима работы двигателя с основного на форсажный и обратно.

На чертеже изображена принципиальная схема маслосистема авиационного газотурбинного двигателя с форсажной камерой сгорания.

Маслосистема включает в себя масляные полости 1 опорных подшипников роторов вентилятора, компрессора и турбины с установленными в них форсунками 2, подключенными к магистрали 3 подачи масла. В магистрали 3 подачи масла за фильтром 4 установлен топливомасляный теплообменник, состоящий из двух секций 5 и 6, топливные полости которых сообщены с разными магистралям подачи топлива в камеры сгорания. Топливная полость теплообменной матрицы секции 5 теплообменника подключена к магистрали 7 подачи топлива в основную камеру сгорания (ОКС), а топливная полость теплообменной матрицы секции 6 теплообменника подключена к магистрали 8 подачи топлива в форсажную камеру сгорания (ФКС). Масляные полости 5 и 6 теплообменника сообщены между собой через управляемый двухпозиционный распределительный клапан 9. Полость управления 10 клапана 9 сообщена с магистралью 8 подачи топлива в ФКС. Вход 11 в клапан 9 сообщен магистралью 12 с выходом из масляной полости секции 5 теплообменника. Клапан 9 имеет два выхода 13 и 14. Выход 13 клапана 9 сообщен магистралью 15 с входом в масляную полость секции 6 теплообменника, а выход 14 клапана 9 магистралью 16 с установленным в ней регулируемым дросселем 17, и выход из масляной полости секции 6 теплообменника магистралью 18 сообщены в магистраль 3 подачи масла. Также маслосистема снабжена маслобаком 19 и коробкой приводов 20, на которой установлены нагнетающий 21 и откачивающий 22 насосы.

При работе двигателя на бесфорсажном режиме масло из маслобака 19 поступает на вход нагнетающего насоса 21 и далее через фильтр 4 попадает на вход масляного тракта теплообменной матрицы секции 5 теплообменника и охлажденное поступающим в топливный тракт теплообменной матрицы из магистрали 7 топливом подводится к входу 11 клапана 9. Так как режим работы двигателя бесфорсажный, давления топлива в полости управления 10 нет и затвор клапана 9 перекрывает проход масла к выходу 13 и открывает ему путь к выходу 14, откуда масло по магистрали 16, с установленным в ней регулируемым дросселем 17, попадает в магистраль 3 подачи масла и далее - к форсунками 2, расположенным в масляных полостях 1.

При включении форсажного режима работы двигателя в магистрали 8 подачи топлива в ФКС появляется топливо, которое начинает перетекать по топливному тракту теплообменной матрицы секции 6 теплообменника. В полости управления 10 клапана 9 возрастает давление и происходит переключение позиции обратного управляемого клапана: выход 14 перекрывается, а выход 13 открывается. Масло из масляной полости теплообменной матрицы секции 5 теплообменника по магистрали 15 попадает в масляную полость теплообменной матрицы секции 6, откуда дополнительно охлажденное форсажным топливом поступает по магистрали 18 в магистраль 3 подачи масла и далее к форсункам 2, расположенным в масляных полостях 1.

Наличие в магистрали 16 регулируемого дросселя 17, пропорционального по гидросопротивлению проточной части масляного тракта, идущего от выхода 13 из клапана 9 через масляную полость секции 6 теплообменника до места сообщения с магистралью подачи масла, позволит при включении форсажного режима исключить падение давления в магистрали 3 подачи масла, а следовательно, и на форсунках 2, что повысит надежность работы двигателя на таком режиме, как форсажный.

Отработанное в масляных полостях 1 масло по системе откачивающих магистралей поступает к откачивающему насосу 22, который возвращает его в маслобак 19 для повторного использования. Воздух из масляных полостей 1, маслобака 19, коробки приводов 20 через систему суфлирующих магистралей удаляется в атмосферу через суфлер.

Класс F02C7/06 размещение опор; смазка

способ монтажа ротора газотурбинного двигателя -  патент 2528789 (20.09.2014)
опора турбины -  патент 2525383 (10.08.2014)
способ запуска газотурбинного двигателя бесконтактным явнополюсным синхронным генератором с вращающимся выпрямителем -  патент 2524776 (10.08.2014)
устройство для смазки опорного подшипника ротора турбомашины -  патент 2522748 (20.07.2014)
маслосистема авиационного газотурбинного двигателя -  патент 2522713 (20.07.2014)
высокотемпературная турбина газотурбинного двигателя -  патент 2518766 (10.06.2014)
газотурбинная установка с тепловым насосом -  патент 2515910 (20.05.2014)
упругодемпферная опора газотурбинного двигателя -  патент 2507405 (20.02.2014)
газосборник газотурбинного двигателя -  патент 2506441 (10.02.2014)
турбомашина -  патент 2499146 (20.11.2013)
Наверх