тампонажный состав для цементирования скважин с низким пластовым давлением

Классы МПК:E21B33/138 глинизация стенок скважины, закачивание цемента в поры и трещины породы 
C09K8/46 содержащие неорганические связующие, например портландцемент
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" (RU)
Приоритеты:
подача заявки:
2013-01-16
публикация патента:

Изобретение относится к области крепления нефтяных и газовых скважин. Тампонажный состав для цементирования скважин с низким пластовым давлением включает 60,5-63,7 мас.% портландцемента, 0,61-1,53 мас.% соли алюминия. Состав дополнительно содержит 0,003-0,045 мас.% оксиэтилированных алкилфенолов 3-АИ, 0,61-1,3 мас.% карбонатов, в качестве которых используют карбонаты калия или натрия, и воду. Техническим результатом является снижение плотности тампонажного раствора и повышение его седиментационной устойчивости. 1 табл., 7 пр.

Формула изобретения

Тампонажный состав для цементирования скважин с низким пластовым давлением на основе портландцемента и жидкости затворения, включающей воду и соль алюминия, отличающийся тем, что он дополнительно содержит оксиэтилированные алкилфенолы 3-АИ, и карбонаты, в качестве которых используют карбонаты калия или натрия, при следующем соотношении компонентов, мас.%

Портландцемент60,5-63,7
Соль алюминия 0,61-1,53
Оксиэтилированные алкилфенолы 3-АИ0,003-0,045
Карбонат калия или натрия0,61-1,3
ВодаОстальное

Описание изобретения к патенту

Изобретение относится к области строительства нефтяных и газовых скважин и используется для крепления ствола скважин, пробуренных в горно-геологических условиях с низким пластовым давлением. Такие составы необходимы для предотвращения разрыва пласта, поглощения цементного раствора, предупреждения потери циркуляции раствора и возникновения аварийной ситуации.

В литературе [Г.Н. Первушин, Д.В. Орешкин «Формирование структуры тампонажного камня со стеклянными микросферами в условиях скважины» // Строительство нефтяных и газовых скважин на суше и на море - 2005. - № 11. - С 34-38] известен состав сверхлегкого тампонажного раствора, предназначенного для цементирования затрубного пространства скважины с низким пластовым давлением. Недостатком данного решения является то, что для достижения необходимых технологических параметров (растекаемости, плотности раствора) необходимо применять повышенное содержание воды, что существенно увеличивает седиментационную неустойчивость тампонажного раствора и его фильтратоотдачу, а образовавшийся камень обладает пониженной прочностью и усадкой.

Наиболее близким к заявляемому объекту по составу является тампонажный состав [В.Е. Ахрименко, З.М. Ахрименко. Патент № 2425956. E21B 33/13], предназначенный для цементирования низкотемпературных скважин. Недостатком указанного решения является высокая плотность цементного раствора, что недопустимо при цементировании скважин с низким пластовым давлением из-за опасности разрыва пласта и возникновения поглощения тампонажного раствора.

Техническим результатом является снижение плотности тампонажного раствора, повышение его седиментационной устойчивости и сокращение сроков схватывания.

Технический результат достигается тем, что тампонажный состав для цементирования скважин с низким пластовым давлением на основе портландцемента и жидкости затворения, включающей воду и соль алюминия, отличающийся тем, что он дополнительно содержит оксиэтилированные алкилфенолы 3-АИ и карбонаты, в качестве которых используют карбонаты калия или натрия, при следующем соотношении компонентов, мас.%

Портландцемент60,5-63,7
Соль алюминия 0,61-1,53
Оксиэтилированные тампонажный состав для цементирования скважин с низким пластовым   давлением, патент № 2530153
алкилфенолы 3-АИ 0,003-0,045
Карбонат калия или натрия0,61-1,3
ВодаОстальное

Новизна заявляемого решения заключается в том, что среди всех исследованных солей, введенных в цементный раствор в разных соотношениях с солями алюминия, эффект наибольшего снижения плотности раствора и повышения его седиментационной устойчивости наблюдается в случае солей угольной кислоты (карбонатов калия или натрия). Указанные соли являются источником карбонат анионов, образующих с катионами алюминия мгновенно гидролизующийся карбонат алюминия. Соли алюминия вступают в обменную реакцию с карбонатом калия или натрия по уравнению

тампонажный состав для цементирования скважин с низким пластовым   давлением, патент № 2530153

Образующийся карбонат алюминия в растворе не существует, т.к. мгновенно подвергается реакции гидролиза по уравнению

тампонажный состав для цементирования скважин с низким пластовым   давлением, патент № 2530153

Суммарный процесс взаимодействия растворов сульфата алюминия и карбоната натрия выразится следующим уравнением реакции

тампонажный состав для цементирования скважин с низким пластовым   давлением, патент № 2530153

Выделяющийся газ насыщает цементный раствор и снижает его плотность. Кроме того, ПАВ в виде оксиэтилированных алкилфенолов при интенсивном перемешивании раствора способствует дополнительному вовлечению воздуха, что делает раствор еще легче, а образовавшийся в растворе гидроксид алюминия в виде объемного геля удерживает цементные частички, предупреждает расслоение цементного раствора и делает его седиментационно устойчивым.

В качестве ПАВ использовались оксиэтилированные алкилфенолы общей формулы тампонажный состав для цементирования скважин с низким пластовым   давлением, патент № 2530153 где n - степень оксиэтилирования 3 и более (Краткая химическая энциклопедия, изд-во «Советская энциклопедия», М., 1961, с.130). Т.к. торговое название пенообразователя связано с его степенью оксиэтилирования, то указанные ПАВ получили рабочее название 3-АИ.

Теоретические исследования автора по вопросу выбора основных реагентов, обеспечивающих снижение плотности и повышение седиментационной устойчивости тампонажных растворов, привели автора к использованию солей высокозарядных катионов, образующих совместно с карбонатами мгновенно гидрализующиеся соли с образованием газообразных продуктов и продуктов, приводящих к резкому повышению гидратных новообразований типа гексагидроксоалюмината кальция (Са3 [Al(OH)6]), что сопровождается ускоренным твердением цементного раствора.

Новизна предлагаемого технического решения заключается в том, что образующийся в процессе обменных реакций гидроксид алюминия за счет высокоразвитой гелевой поверхности удерживает газонаполненный цементный раствор во взвешенном состоянии, предупреждает его расслоение и усадку камня. Оставшиеся непрореагированные катионы алюминия вступают во взаимодействие со свободной известью цементного раствора, что приводит к повышению концентрации гидратных новообразований и ускорению процесса твердения цементного раствора. Кроме того, образующиеся в процессе реакции гидролиза соли азотной, серной и хлороводородной кислот являются также ускорителями твердения цементных растворов, что обеспечивает полученным легким тампонажным растворам быстрое твердение даже при низких положительных температурах.

При цементировании скважин с низким пластовым давлением особенно необходимы легкие быстро твердеющие тампонажные растворы с низкой водоотдачей, образующие в период ОЗЦ (ожидаемое время затвердевания цемента) прочный безусадочный камень с высокими адгезионными свойствами.

Прочностные свойства цементного камня (сжатие и изгиб) определяли по существующей методике, а адгезионные (адгезию на сдвиг) с помощью прибора, представленного на рисунке. Для этого в цементный раствор помещали металлический стержень и оставляли в покое. После определенного времени твердения с помощью указанного прибора определяли нагрузку, приложенную к стержню на его сдвиг в цементном камне. Тампонажный раствор готовят путем интенсивного перемешивания навески портландцемента с жидкостью затворения, состоящую из воды, соли алюминия, оксиэтилированных алкилфеноов 3-АИ и карбоната щелочного металла.

Поскольку основными ингредиентами состава являются соли алюминия, оксиэтилированные алкилфенолы 3-АИ и карбонаты калия или натрия, то в примерах представлены следующие их весовые соотношения.

Пример 1. Готовят жидкость затворения из растворов сульфата алюминия 2 г (0,64%); 0,1 г (0,003%) оксиэтилированные алкилфенолы 3-АИ в пересчете на сухое вещество, 2 г (0,64%) K 2CO3 и воды 110 мл (34,8%). Полученную жидкость затворения смешивают с 200 г портландцемента. После тщательного перемешивания с помощью электромешалки определяли технологические параметры цементного раствора, прочность камня и его адгезию после 2-суточного твердения в питьевой воде при 22°C. Растекаемость полученного раствора 19,5 см; плотность раствора 1452 кг/м 3; начало схватывания 7 час 50 мин; конец схватывания 11 час 20 мин; прочность камня на сжатие 2,8 МПа; адгезия 1,7 МПа.

Пример 2. Готовят жидкость затворения из растворов сульфата алюминия 2 г (0,63%); оксиэтилированных алкилфенолов 3-АИ 0,02 г (0,006%); карбоната калия 2 г (0,63%); воды 115 мл (36%). Полученную жидкость затворения смешивают с 200 г (63,5%) портландцемента. После тщательного перемешивания с помощью электромешалки определяли технологические параметры цементного раствора, прочность камня и его адгезию после 2-суточного твердения в питьевой воде при 22°C. Растекаемость полученного раствора 20,5 см; плотность 1273 кг/м3; начало схватывания 8 час 40 мин, конец схватывания 12 час 15 мин; прочность камня 2,3 МПа; адгезия 1,4 МПа.

Пример 3. Готовят жидкость затворения из растворов сульфата алюминия 5 г (1,53%), оксиэтилированных алкилфенолов 3-АИ 0,12 г (0,037%); карбоната калия 3 г (0,9%) и воды 120 мл (36,8%). Полученную жидкость затворения смешивают с 200 г (61,3%) портландцемента. После перемешивания на электромешалке определяли технологические параметры раствора, прочность камня и его адгезию после 2-суточного твердения в питьевой воде при 22°C. Растекаемость каствора 21,5 см; плотность 532 кг/м3, начало схватывания 9 час 12 мин, конец схватывания 14 час 20 мин, прочность камня 1,6 МПа 4, адгезия 0,85 МПа.

Пример 4. Готовят жидкость затворения из растворов хлорида алюминия 2 г (0,63%); оксиэтированных алкилфенолов 3-АИ 0,01 г (0,003%); карбоната натрия 2 г (0,63%), воды 110 г (35,1%). Полученную жидкость затворения смешивают с 200 г портландцемента. После перемешивания с помощью электромешалки определяли технологические параметры раствора, прочность камня и его адгезию после 2-суточного твердения в питьевой воде при 22°C. Растекаемость полученного раствора 19,5 см, плотность 1448 кг/м3, начало схватывания 7 час 30 мин, конец схватывания 10 час 20 мин; прочность камня 2,7 МПа; адгезия 1,6 МПа.

Пример 5. Готовят жидкость затворения из растворов хлорида алюминия 2 г (0,61%); оксиэтилированных алкилфенолов 3-АИ 0,12 г (0,037%); карбоната натрия 2 г (0,61%); воды 120 мл (37%). Полученную жидкость затворения смешивают с 200 г (61,3%) портландцемента. После перемешивания на электромешалке определяли технологические параметры раствора, прочность камня и его адгезию после 2-суточного твердения в питьевой воде при 22°C. Растекаемость полученного раствора 20 см; плотность 768 кг/м3; начало схватывания 8 час 40 мин; конец схватывания 13 час 35 мин, прочность камня 1,7 МПа; адгезия 0,98 МПа.

Пример 6. Готовят жидкость затворения из растворов хлорида алюминия 1 г (0,31%); оксиэтилированных алкилфенолов 3-АИ 0,12 г (0,037%); карбоната натрия 2 г (0,62%); воды 120 мл (37,%). Полученную жидкость затворения смешивают с 200 г (61,9%) портландцемента. После перемешивания на электромешалке определяли технологические параметры раствора; растекаемость 22,5 см; плотность 786 кг/м3; система расслаивается. Из-за неустойчивости системы другие параметры не определяли.

Пример 7. Готовят жидкость затворения из растворов хлорида алюминия 4,5 г (1,3%); оксиэтилированных алкилфенолов 3-АИ 0,12 г (0,013%); карбоната натрия 4,5 г (1,3%), воды 120 мл (36,5%). Полученную жидкость затворения смешивают с 200 г (60,8%) портландцемента. После перемешивания раствор получился очень вязкий с плотностью 624 кг/м3, поэтому остальные параметры не определяли.

Все данные, приведенные в примерах 1-7, представлены в таблице «Влияние реагентов на свойства цементного раствора и камня».

тампонажный состав для цементирования скважин с низким пластовым   давлением, патент № 2530153

Класс E21B33/138 глинизация стенок скважины, закачивание цемента в поры и трещины породы 

селективный состав для ремонтно-изоляционных работ в нефтяных и газовых скважинах -  патент 2529080 (27.09.2014)
состав для изоляции притока воды в добывающие нефтяные скважины -  патент 2527996 (10.09.2014)
улучшенные способы размещения и отклонения текучих сред в подземных пластах -  патент 2527988 (10.09.2014)
состав для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах -  патент 2527443 (27.08.2014)
способ разработки залежей высоковязких нефтей или битумов при тепловом воздействии -  патент 2527051 (27.08.2014)
способ изоляции водопроявляющих пластов при строительстве скважины -  патент 2526061 (20.08.2014)
состав для изоляции водопритока в скважине -  патент 2526039 (20.08.2014)
способ ограничения водопритока в скважину -  патент 2525079 (10.08.2014)
гипсомагнезиальный тампонажный раствор -  патент 2524774 (10.08.2014)
тампонажный облегченный серосодержащий раствор -  патент 2524771 (10.08.2014)

Класс C09K8/46 содержащие неорганические связующие, например портландцемент

тампонажный материал -  патент 2460754 (10.09.2012)
тампонажный материал для цементирования скважин с большим газовым фактором -  патент 2447123 (10.04.2012)
цементы для использования внутри формаций, содержащих гидраты газов -  патент 2442878 (20.02.2012)
цементирующая композиция, содержащая цементную пыль, стекловидный глинистый сланец, цеолит и/или аморфный кремнезем, использующие заполнение относительного объема, и связанные способы -  патент 2433970 (20.11.2011)
цементный раствор с низким соотношением вода:цемент -  патент 2415092 (27.03.2011)
способ получения цемента -  патент 2398749 (10.09.2010)
состав для инертизации отходов бурения -  патент 2387689 (27.04.2010)
модифицированный отверждающий состав для отверждения минерализованных полужидких отходов бурения (мос-1) -  патент 2387688 (27.04.2010)
цемент тампонажный высокотемпературный армированный -  патент 2375552 (10.12.2009)
тампонажный состав -  патент 2351631 (10.04.2009)
Наверх