электрод для сварки теплоустойчивых сталей

Классы МПК:B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 
B23K35/365 выбор неметаллических составов материалов покрытий только, либо совместно с выбором материалов для пайки или сварки
Автор(ы):, , , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" (ФГУП "ЦНИИ КМ "Прометей") (RU),
Открытое акционерное общество "Ижорские заводы" (RU)
Приоритеты:
подача заявки:
2013-04-08
публикация патента:

Изобретение может быть использовано при ручной дуговой сварке конструкций химического машиностроения из сталей 2,25%Cr-1%Mo-0,25%V композиции. Электрод состоит из стержня из легированной стали 2,25%Cr-1%Mo-0,25%V и покрытия, содержащего следующие компоненты (в % по массе): мрамор 30,5-56,0, плавикошпатовый концентрат 20,0-33,0; двуокись титана 14,0-20,0; песок кварцевый 4,0-10,0; ферросилиций 1,0-3,0; марганец металлический 0,5-3,0; ферротитан 6,0-12,0; сода кальцинированная 0,5-2,5. При изготовлении электродов использовано натриево-калиевое жидкое стекло в количестве 23-32% к массе сухой смеси. Электроды обеспечивают высокий показатель ударной вязкости металла шва при температурах -30°C и выше, а также высокие прочностные и пластические свойства при температурах до 454°C. 1 з.п. ф-лы, 4 табл.

Формула изобретения

1. Электрод для сварки теплоустойчивых сталей 2,25%Cr-1%Mo-0,25%V композиции, состоящий из стального стержня, выполненного из легированной проволоки, содержащей углерод, кремний, марганец, хром и молибден, и электродного покрытия, содержащего мрамор, концентрат плавикошпатовый, диоксид титана, кварцевый песок, ферросилиций, марганец металлический, ферротитан и стекло натриево-калиевое жидкое, отличающийся тем, что электродное покрытие содержит указанные компоненты при следующем соотношении, мас.%:

мрамор30,5-56,0
концентрат плавикошпатовый 20,0-33,0
диоксид титана 14,0-20,0
песок кварцевый 4,0-10,0
ферросилиций 1,0-3,0
марганец металлический 0,5-3,0
ферротитан 6,0-12,0
стекло натриево-калиевое жидкое23-32 (свыше 100%),


а проволока стального стержня дополнительно содержит ванадий при следующем соотношении компонентов, мас.%:

углерод0,14-0,16
кремний0,15-0,22
марганец0,70-0,90
хром2,10-2,50
молибден0,90-1,20
ванадий0,15-0,40
железо и примеси остальное,


при выполнении следующего соотношения элементов, мас.%:

электрод для сварки теплоустойчивых сталей, патент № 2530215

2. Электрод по п.1, отличающийся тем, что электродное покрытие дополнительно содержит кальцинированную соду в количестве 0,5-2,5 мас.%.

Описание изобретения к патенту

Изобретение относится к области производства сварочных материалов для сталей 2,25%Cr-l%Mo-0,25%V композиции и может применяться при изготовлении корпусов нефтехимических реакторов.

Известны электроды для сварки сталей 2,25%Cr-l%Mo-0,25%V композиции, марок CMA-106HD (KOBELKO «Welding Handbook», Япония), FOX P24 (Bohler «Сварочные материалы для химической и нефтехимической промышленности», Германия), ALCROMO E225 (OERLIKON «Handbook of Welding Consumables», Германия-Швейцария).

Их недостатком является недостаточная прочность при повышенных рабочих температурах (до 454°C). В качестве прототипа были взяты отечественные электроды марки Н-10АА (патент RU 2398666 C2, опубликованный 10.09.2010), на основе стержня из стали марки Св-04Х2МАА и покрытия, содержащего в % по массе:

Мрамор25-40
Концентрат плавикошпатовый 20,0-33,0
Песок кварцевый 10,0-15,0
Ферросилиций 4,0-5,0
Ферромарганец 3,0-5,0
Ферротитан 5,0-10,0
Диоксид титана 5,0-20,0
Стекло натриево-калиевое жидкое23-32 (свыше 100%)

Металл шва, выполненный этими электродами, имеет высокую стойкость к тепловому охрупчиванию и высокие показатели сварочно-технологических характеристик, однако имеет низкую ударную вязкость при отрицательных температурах и низкую горячую прочность.

Техническим результатом изобретения является значительное увеличение прочностных свойств при температурах до 454°C, а также обеспечение высоких значений ударной вязкости при температурах -30°C и выше.

Дополнительным техническим результатом является сохранение высоких сварочно-технологических свойств электрода.

Технический результат изобретения достигается за счет того, что покрытие электрода содержит мрамор, концентрат плавикошпатовый, диоксид титана, кварцевый песок, ферросилиций, ферротитан и марганец металлический при следующем соотношении компонентов, масс.%:

Мрамор30,5-56,0
Концентрат плавикошпатовый 20,0-33,0
Диоксид титана 14,0-20,0
Песок кварцевый 4,0-10,0
Ферросилиций 1,0-3,0
Марганец металлический 0,5-3,0
Ферротитан 6,0-12,0
Стекло натриево-калиевое жидкое23-32 (свыше 100%)

Дополнительный технический результат достигается за счет введения в электродное покрытие кальцинированной соды в количестве 0,5-2,5 масс.%.

Проволока стального стержня дополнительно содержит ванадий при следующем соотношении компонентов, масс.%:

Углерод0,14-0,16
Кремний0,15-0,22
Марганец0,70-0,90
Хром2,10-2,50
Молибден0,90-1,20
Ванадий0,15-0,40
Железо и примеси Остальное

а также удовлетворяет соотношению трещиностойкости электрод для сварки теплоустойчивых сталей, патент № 2530215 (содержание всех элементов вводится в % по массе) (при невыполнении этого соотношения появляется опасность появления «холодных» трещин).

Увеличение в составе проволоки содержания углерода и молибдена повысило прокаливаемость металла шва, что позволило получить достаточно однородную структуру металла шва с минимальным количеством структурно свободного феррита, а также высокие показатели длительной прочности. Повышение углерода свыше 0,16% ведет к образованию трещин в металле шва, а понижение ниже 0,14% ведет к снижению прочности металла сварного шва.

Повышение молибдена выше 1,2% ведет к существенному тепловому охрупчиванию, а снижение ниже 0,9% снижает прочность при повышенных температурах (до 454°C) и сопротивляемость ползучести металла шва.

Введение в состав проволоки ванадия существенно улучшило прочность металла, однако его содержание свыше 0,4% ведет к существенному ухудшению ударной вязкости при отрицательных температурах, а снижение ниже 0,15% не обеспечивает нужной прочности металла при 454°C.

Снижение в составе покрытия ферросилиция (до 3% и менее) и кварцевого песка (до 10% и менее) направлено на обеспечение повышения ударной вязкости при отрицательных температурах, однако при содержании ферросилиция менее 1% и кварцевого песка менее 4% существенно ухудшается отделимость шлака.

Повышение в составе покрытия мрамора (до 30,5% и более) улучшает газовую защиту сварочной ванны за счет повышения объемов образования защитных газов (CO, CO2), что в свою очередь предотвращает насыщение поверхностного слоя металла азотом, что опасно упрочнением металла и падением значений ударной вязкости. Однако при увеличении содержания мрамора свыше 56,0% ухудшается шлаковая защита сварочной ванны, а также идет активное выгорание легирующих элементов в металле шва, что приводит к потере нужного уровня прочности металла.

Введение кальцинированной соды в небольших количествах стабилизирует горение дуги за счет того, что Na обладает низкой «работой выхода», а значит легче ионизируется.

Оптимальное содержание вредных примесей, масс.%:

НикельНе более 0,20
МедьНе более 0,20
Сера Не более 0,010
Фосфор Не более 0,015

Металл шва, выполненного предлагаемыми электродами должен удовлетворять требованиям X и K-факторов, задающих чистоту металла по вредным примесям (X=(10P+5Sb+4Sn+As)электрод для сварки теплоустойчивых сталей, патент № 2530215 0,12 (содержание всех элементов вводится в % по массе); K=(Pb+Bi+0,03Sb)электрод для сварки теплоустойчивых сталей, патент № 2530215 1,5 ppm (содержание всех элементов вводится в ppm).

В ООО «Ижорские сварочные материалы» и ОАО «Ижорские заводы» был проведен комплекс промышленных испытаний предлагаемых электродов.

С использованием предлагаемых электродов были изготовлены и испытаны сварные пробы.

Химический состав проволок, использованных для производства электродов приведен в таблице 1.

Таблица 1
Химический состав проволок разных составов (% по массе)
№ партииC MnSiCr NiMoV SPCu электрод для сварки теплоустойчивых сталей, патент № 2530215
1.1 0,180,850,28 2,370,14 1Д90,290,005 0,0120,04 0,450
1.2 0,150,760,22 2,430,16 0,970,230,005 0,0090,06 0,395
1.3 0,140,880,21 2,360,12 1,040,270,005 0,0110,08 0,389
1.4 0,140,810,17 2,480,18 0,670,200,005 0,0080,05 0,369
известные 0,070,740,29 2,040,17 0,61-0,008 0,0090,07 0,259

Составы электродных покрытий приведены в таблице 2.

Таблица 2
Составы электродных покрытий
КомпонентыПартия 1.1% Партия 1.2%Партия 1.3% Партия 1.4%Известные %
Мрамор46,546,5 47,542,5 33,0
Концентрат плавикошпатовый 21,019,0 20,024,026,0
Диоксид титана 14,014,015,0 15,014,0
Песок кварцевый 6,05,05,0 5,012,5
Ферросилиций2,0 3,02,0 2,04,5
Марганец металлический1,5 1,52,52,5 -
Ферромарганец -- --4,0
Ферротитан8,0 9,07,0 8,06,0
Сода кальцинированная1,0 2,01,01,0 -
Стекло натриево-калиевое жидкое (сверх 100%)24 262528 30

Испытания на растяжение металла шва предлагаемых электродов проходили при температурах +20°C и +454°C. Испытания известных электродов проходили при +20°C и +450°C. Результаты испытаний приведены в таблице 3.

Таблица 3
Результаты испытаний на растяжение металла шва
№ партииТемпература испытаний, °C Rm, H/мм2 RP0,2, H/мм2A, %Z, %
1.1Обнаружены небольшие трещинки перпендикулярно сварному шву
1.220660 58017 62,0
454 520-- -
1.3 20680590 1867,5
454530 ---
1.4 20560410 1765,0
454320 ---
Известные 20340433 1861,3
450290 ---

Испытания на ударный изгиб металла шва предлагаемых электродов проводились при температурах -30°C, -18°C. Известные электроды испытывались при +20°C. Результаты испытаний приведены в таблице 4.

Таблица 4
Показатели ударной вязкости металла шва
№ партииТемпература испытаний, °C Значения показателя ударной вязкости, Дж/см2
1.1 Обнаружены небольшие трещинки перпендикулярно сварочному шву
1.2 -18167,875,2 156,0
-30 99,7124,8 84,4
1.3 -18168,8197,5 171,3
-30 95,5112,2 110,6
1.4 -18140,3159,1 93,5
-30 85,2100,3 78,3
Известные +2075,380,1 84,5

Результаты испытаний показывают, что предлагаемые электроды имеют значительно лучшие механические свойства при удовлетворительных показателях сварочно-технологических свойств.

Класс B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 

быстрозакаленный припой из сплава на основе титана-циркония -  патент 2517096 (27.05.2014)
сварочная проволока -  патент 2511382 (10.04.2014)
пригодный для сварки, жаропрочный, стойкий к окислению сплав -  патент 2507290 (20.02.2014)
гамма/гамма' -суперсплав на основе никеля с многочисленными реакционно-активными элементами и применение указанного суперсплава в сложных системах материалов -  патент 2500827 (10.12.2013)
ролик для поддерживания и транспортирования горячего материала, имеющий наплавленный посредством сварки материал, присадочный сварочный материал, а также сварочная проволока для проведения наплавки сваркой -  патент 2499654 (27.11.2013)
аустенитный сварочный материал и способ профилактического технического обслуживания для предотвращения коррозионного растрескивания под напряжением и способ профилактического технического обслуживания для предотвращения межкристаллитной коррозии с его использованием -  патент 2488471 (27.07.2013)
сварочная проволока из нержавеющей стали с флюсовым сердечником для сварки оцинкованного стального листа и способ дуговой сварки оцинкованного стального листа с применением указанной сварочной проволоки -  патент 2482947 (27.05.2013)
сварочная проволока из низкоуглеродистой легированной стали -  патент 2477334 (10.03.2013)
способ нанесения покрытия на поверхность деталей с помощью электроконтактной сварки с использованием порошкового присадочного материала, содержащего железный порошок, и присадочный материал для его осуществления -  патент 2473413 (27.01.2013)
твердый припой -  патент 2469829 (20.12.2012)

Класс B23K35/365 выбор неметаллических составов материалов покрытий только, либо совместно с выбором материалов для пайки или сварки

Наверх