система гелиотеплохладоснабжения

Классы МПК:F24J2/42 системы, использующие энергию солнечной радиации, не отнесенные к другим рубрикам
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего Профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) (RU)
Приоритеты:
подача заявки:
2012-11-14
публикация патента:

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, холодным каналом - с помещением, а горячим - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к холодному каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, при этом система снабжена термоэлектрическим генератором, выполненным в виде корпуса и комплекта дифференциальных термопар, причем в корпусе расположен проходной канал для горячего теплоносителя и проходной канал для холодного теплоносителя, кроме того, входной патрубок проходного канала для горячего теплоносителя соединен каналом горячего потока вихревой трубы, а выходным своим патрубком - с грунтовым воздухопроводом, при этом входной патрубок проходного канала для холодного теплоносителя соединен с каналом холодного потока вихревой трубы, выходным своим патрубком - с помещением. Технический результат изобретения заключается в снижении энергоемкости системы гелиотеплохладоснабжения путем использования разности температур холодного и горячего потоков вихревой трубы для выработки электрической энергии посредством термоэлектрического генератора. 2 ил. система гелиотеплохладоснабжения, патент № 2530981

система гелиотеплохладоснабжения, патент № 2530981 система гелиотеплохладоснабжения, патент № 2530981

Формула изобретения

Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, отличающаяся тем, что снабжена термоэлектрическим генератором, выполненным в виде корпуса и комплекта дифференциальных термопар, причем в корпусе расположен проходной канал для горячего теплоносителя и проходной канал для холодного теплоносителя, кроме того, входной патрубок проходного канала для горячего теплоносителя соединен с каналом «горячего» потока вихревой трубы, а выходным своим патрубком - с грунтовым воздухопроводом, при этом входной патрубок проходного канала для холодного теплоносителя соединен с каналом «холодного» потока вихревой трубы, выходным своим патрубком - с помещением.

Описание изобретения к патенту

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.

Известна система гелиотеплохладоснабжения (см. авторское свидетельство СССР № 1322038, кл. F24J 2/42, 1987), содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенный на соответствующих сторонах здания тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовой воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами.

Недостатком данной системы является невозможность поддержания микроклимата внутри здания, как по температуре, так и по степени очистки атмосферного воздуха от загрязнений в виде твердых и каплеобразных частиц, имеющих разнообразный состав при изменяющихся погодно-климатических условиях.

Известна система гелиотеплохладоснабжения (см. авторское свидетельство СССР № 1733871, кл. F24J 2/42, 1992, бюл. № 18), содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, холодным каналом - с помещением, а горячим - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением.

Недостатком технического решения является энергоемкость системы, обусловленная необходимостью дополнительного потребления электрической энергии на дежурном освещении в темное время суток, а также обеспечением электропитания схем автоматизированного контроля и регулирования технологического оборудования.

Техническая задача предлагаемого изобретения - снижение энергоемкости системы гелиотеплохладоснабжения путем использования разности температур «холодного» и «горячего» потоков вихревой трубы для выработки электрической энергии посредством термоэлектрического генератора, выполненного в виде корпуса с двумя проходными каналами для горячего и холодного теплоносителей, а также комплекта дифференциальных термопар.

Технический результат достигается тем, что система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, при этом система снабжена термоэлектрическим генератором, выполненным в виде корпуса и комплекта дифференциальных термопар, причем в корпусе расположен проходной канал для горячего теплоносителя и проходной канал для холодного теплоносителя, кроме того, входной патрубок проходного канала для горячего теплоносителя соединен каналом горячего потока вихревой трубы, а выходным своим патрубком - с грунтовым воздухопроводом, при этом входной патрубок проходного канала для холодного теплоносителя соединен с каналом «холодного» потока вихревой трубы, выходным своим патрубком - с помещением.

На фигуре 1 представлена схема системы гелиотеплохладоснабжения, на фигуре 2 - соединение вихревой трубы с термоэлектрическим генератором.

Система содержит воздухопроводы: южный 1, подпольный 2, северный 3, теплообменный 4 и грунтовый 5 с грунтовыми теплопроводящими трубами 6, помещение 7, под которым расположен тепловой аккумулятор 8, вихревую трубу 9 с входом 10 для обрабатываемого воздуха, каналом «холодного» потока 11, соединенным с входом 12 фильтра 13, и каналом «горячего» потока 14, соединенным с грунтовым воздухопроводом 5, фильтр 13 своим выходом 15 соединен с внутренним объемом помещения 7, нагнетательный вентилятор 16, установленный в вентиляционной камере 17 и соединенный подпольным воздухопроводом 2 через воздушные заслонки 18 и 19 с входом 10 вихревой трубы 9 и с выходом 12 фильтра 13, вытяжной вентилятор 20, установленный в вентиляционной камере 21 и соединенный теплообменным воздухопроводом с северным воздухопроводом, осуществляющим выброс воздуха из помещения 7 в атмосферу.

Термоэлектрический генератор 22 выполнен в виде корпуса 23 и комплекта дифференциальных термопар 24, причем в корпусе 23 расположены проходной канал для горячего теплоносителя 25 с входным 26 и выходным 27 патрубками, а также проходной канал для холодного теплоносителя 28 с входным 29 и выходным 30 патрубками. Входной патрубок 26 проходного канала для горячего теплоносителя 25 соединен с каналом горячего потока 14 вихревой трубы 9, а выходным патрубком 27 - с групповым воздухопроводом 5. «Горячие» концы 31 комплекта дифференциальных термопар 24 укреплены внутри проходного канала для горячего теплоносителя 25, а их «холодные» концы 32 укреплены внутри проходного канала для холодного теплоносителя 28. Входной патрубок 29 проходного канала для холодного теплоносителя 28 соединен с каналом холодного потока 11, а выходным патрубком 30 через фильтр 12 - с помещением 7.

Система гелиотеплохладоснабжения работает следующим образом.

Известно, что в вихревой трубе 9 происходит термодинамическое расслоение воздуха избыточного давления или газа на «горячий» и «холодный» потоки с разницей температур свыше 40°С (см., например, Меркулов В.П. Вихревой эффект и его использование в технике. Самара, 1991 г. - 368 с.) между каналами горячего потока 14 и холодного потока 11. Следовательно, термодинамически расслоенный «горячий» поток атмосферного воздуха из вихревой трубы 9 по каналу горячего потока 14 поступает через входной патрубок 26 в проходной канал для горячего теплоносителя 25, где контактирует с «горячими» концами 31 комплекта дифференциальных термопар 24 и далее направляется через выходной патрубок 27 в грунтовой воздухопровод 5. Одновременно термодинамически расслоенный «холодный» поток атмосферного воздуха поступает из вихревой трубы 9 по каналу холодного потока 11 через входной патрубок 29 в проходной канал для холодного теплоносителя 28, где контактирует с «холодными» концами 32 комплекта дифференциальных термопар 24 и далее направляется через выходной патрубок 30 во вход 12 фильтра 13.

В результате контакта «горячего» потока с «горячими» концами 31 комплекта дифференциальных термопар 24, а «холодных» концов 32 с «холодным» потоком на каждом элементе комплекта дифференциальных термопар 24 при использовании в материале термопар, например хромель-копель, возникает термо-ЭДС до 6,96 мВ (см., например, Иванова Г.М. Теплотехнические измерения и приборы. М.: Энергоатомиздат, 1984 г. - 230 с.). Это позволяет получить напряжение на выходе термоэлектрического генератора 22 в пределах 12-36 В (см., например. Технические основы теплотехники. Теплотехнический эксперимент. Справочник / под общ. ред. В.М.Зорина. М.: Энергоатомиздат, 1980 г. - 560 с.), что вполне достаточно для дежурного освещения помещения и/или питания схем автоматизации и контроля системы гелиотеплохладоснабжения, что снижает ее энергоемкость.

В теплое время года при температурах атмосферного воздуха выше значений температуры, предусмотренных параметрами микроклимата внутри помещения 7, например, 25°С (воздушная заслонка 19 закрыта) атмосферный воздух по южному воздухопроводу 1 нагнетается в подпольный воздухопровод 2 вентилятором 16, установленным в вентиляционной камере 17. Из подпольного воздухопровода 2 по открытой воздушной заслонке 18 атмосферный воздух под избыточным давлением поступает на вход 10 вихревой трубы 9, в которой происходит расслоение на «холодный» (температура несколько ниже входящего в вихревую трубу атмосферного воздуха) и «горячий» (температура несколько выше входящего в вихревую трубу атмосферного воздуха) потоки воздуха. Холодный поток разделенного в вихревой трубе 9 атмосферного воздуха с заданной по условиям микроклимата внутри здания 7 температурой, например 18°С, по холодному каналу 11 вихревой трубы 9 поступает на вход 12 и в фильтр 13, где очищается от твердых частиц загрязнений, а также от жидких частиц сконденсировавшейся в процессе охлаждения парообразной влаги атмосферного воздуха, а как известно, чем выше температура атмосферного воздуха, тем больше в нем влаги, при этом отделенные загрязнения в фильтре 13 удаляются из него через установку удаления загрязнений, например конденсатоотводчик поплавкового типа. «Горячий» поток атмосферного воздуха по горячему каналу 14 вихревой трубы 9 направляется в грунтовый воздухопровод 5, где охлаждается, отдавая тепло грунту, а сконденсировавшаяся в процессе охлаждения воздуха влага удаляется через теплопроводящие трубы 6 и дренируется в грунте. Охлажденный в грунтовом воздухопроводе 5 воздух поступает к входу 12 фильтра 13, где окончательно очищается от капельнообразных загрязнений и твердых частиц загрязнений, т.е. доводится до параметров, определяемых заданным микроклиматом в помещении 7. Из фильтра 13 обработанный воздух с заданными параметрами по температуре, влажности и степени очистки от твердых частиц поступает внутрь помещения 7.

Воздух из помещения 7 вентилятором 20, установленным в вентиляционной камере 21, направляется в теплообменный воздухопровод 4, где отдает тепло аккумулятору 8, и по северному воздухопроводу 3 выбрасывается в атмосферу.

Размещение вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает дополнительное накопление тепла, выделяемого через корпус вихревой трубы 9, в процессе расслоения обрабатываемого атмосферного воздуха на «холодный» и «горячий» потоки.

В результате тепловой аккумулятор 8 накапливает тепловую энергию, поступающую как от теплообменного воздухопровода 4, так и от корпуса вихревой трубы 9.

При снижении температуры нагнетаемого вентилятором 16 атмосферного воздуха ниже гостированной для заданных условий микроклимата здания 7, например в ночное время температура около 15°С, открывается воздушная заслонка 19 (воздушная заслонка 18 закрыта). Атмосферный воздух по южному воздухопроводу 1 вентилятором 16 через открытую воздушную заслонку 19 подается в фильтр 13, где очищается до заданных условиями микроклимата в помещении 7 параметров. Тепловой аккумулятор 8 отдает тепло всасываемому атмосферному воздуху в подпольном воздухопроводе 2, нагревая его до необходимой температуры. Если тепловой энергии, отдаваемой тепловым аккумулятором 8 атмосферному воздуху, движущемуся по подпольному воздухопроводу 2, недостаточно, то осуществляется подогрев отопительной системой (не указано), затраты которой будут снижены, так как значительная часть тепла поступает от теплового аккумулятора 8 и грунта.

Размещение фильтра 13 после вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает снижение энергоемкости очистки нагнетаемого вентилятором 16 через южный 1 воздухопровод атмосферного воздуха вовнутрь помещения 7 за счет частичной очистки в процессе расслоения обрабатываемого воздуха (часть твердых загрязнений перемещается в горячий поток и дренируется в грунт по теплообменным трубам 6). А также полученное тепло от аккумулятора 8 при низких температурах атмосферного воздуха устраняет возможность обмерзания фильтрующих элементов, приводящего к возрастанию гидравлического сопротивления при температурах атмосферного воздуха, имеющих значение существенно более низкое, чем предусмотрено параметрами микроклимата внутри помещения 7, вихревая труба 9 воздушной заслонкой 18 отключается от подпольного воздухопровода 2. Всасывающий атмосферный воздух нагревается как в южном воздухопроводе 1 за счет использования тепла солнечной радиации (южный воздухопровод выполнен из поглощающего солнечную радиацию материала), так и от теплового аккумулятора 8 в подпольном воздухопроводе 2. В случае недостатка данного тепла для получения заданной температуры воздуха, нагнетаемого вовнутрь помещения 7, применяется отопительная система (не показана) незначительной мощности.

В результате предлагаемое изобретение позволяет использовать солнечную энергию и аккумулирующие свойства грунта как при положительных, так и при отрицательных температурах атмосферного воздуха, обеспечивая снижение энергозатрат процесса получения заданных параметров микроклимата внутри помещения как по температуре, так и по степени очистки вентилируемого воздуха от загрязнений в виде твердых и каплеобразных загрязнений.

Оригинальность предлагаемого технического решения заключается в том, что использование температурного перепада между термодинамически расслоенными «горячими» и «холодными» потоками атмосферного воздуха в вихревой трубе дополнительно позволяет вырабатывать электрическую энергию, достаточную для дежурного освещения и/или питания схем автоматизации и контроля системы гелиотеплохладоснабжения, что и снижает ее энергоемкость.

Класс F24J2/42 системы, использующие энергию солнечной радиации, не отнесенные к другим рубрикам

способ веерной концентрации солнечной энергии и устройство для его осуществления -  патент 2516728 (20.05.2014)
солнечно-ветровой опреснитель -  патент 2516054 (20.05.2014)
когенерационная фотоэлектрическая тепловая система -  патент 2509268 (10.03.2014)
гелиоустановка для химических реакций -  патент 2506504 (10.02.2014)
многофункциональная солнечноэнергетическая установка -  патент 2505887 (27.01.2014)
солнечный модуль с концентратором и способ его изготовления (варианты) -  патент 2503895 (10.01.2014)
солнечный модуль с концентратором -  патент 2502024 (20.12.2013)
способ изготовления отражательного устройства гелиоустановки -  патент 2500957 (10.12.2013)
конструкция фотоэлектрического гибкого модуля -  патент 2492553 (10.09.2013)
солнечный концентраторный модуль (варианты) -  патент 2488915 (27.07.2013)
Наверх