способ получения биомиметического кальций-фосфатного покрытия на сплавах титана из модельного раствора синовиальной жидкости человека

Классы МПК:A61L27/12 фосфорсодержащии материалы, например апатит
A61L27/32 фосфорсодержащие материалы, например апатит
C04B35/447 на основе фосфатов
C01B25/32 фосфаты магния, кальция, стронция или бария 
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" (RU)
Приоритеты:
подача заявки:
2013-07-12
публикация патента:

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании биоактивных кальций-фосфатных покрытий на имплантатах, при создании бифазных композитов на основе фосфатов кальция и сплавов титана. Заявлен способ получения биомиметического кальций-фосфатного покрытия на сплавах титана из модельного раствора синовиальной жидкости человека, в котором готовят раствор состава: CaCl2 - 1,3431 г/л, Na2HPO4·12H 2O - 7,4822 г/л, NaCl - 2,8798 г/л, MgCl2·6H 2O - 0,4764 г/л, Na2SO4 - 1,6188 г/л, KCl - 0,3427 г/л, NaHCO3 - 2,0160 г/л, осаждают две твердые фазы карбонатгидроксилапатита и октакальция фосфата при температуре 22-25°C, значении pH=7,4±0,05, в течение 7 дней. Затем фильтруют и сушат при 100°C в течение 2-3 часов до удаления химически несвязанной воды и готовят водную суспензию при концентрации фосфата кальция 5-10 мас.%. Полученную суспензию наносят капиллярным методом на сплав титана, сушат при температуре 20-25°C в течение 24 часов. Изобретение обеспечивает получение качественного покрытия на сплавах из титана, состоящего из карбонатгидроксилапатита и октакальция фосфата. 2 табл., 3 ил.

способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350

Формула изобретения

Способ получения биомиметического кальций-фосфатного покрытия на сплавах титана из модельного раствора синовиальной жидкости человека, в котором готовят раствор состава: CaCl2 - 1.3431 г/л, Na2HPO4·12H2 O - 7.4822 г/л, NaCl - 2.8798 г/л, MgCl2·6H 2O - 0.4764 г/л, Na2SO4 - 1.6188 г/л, KCl - 0.3427 г/л, NaHCO3 - 2.0160 г/л, осаждают две твердые фазы карбонатгидроксилапатита и октакальция фосфата при температуре T1=22-25°C, значении pH=7,4±0,05, в течение 7 дней, фильтруют и сушат при T2=100°C в течение 2-3 часов, до удаления химически несвязанной воды, затем готовят водную суспензию при концентрации фосфата кальция способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 =5-10 мас.%, наносят суспензию капиллярным методом на сплав титана, сушат при температуре T3=20-25°C, в течение 24 часов.

Описание изобретения к патенту

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании биоактивных кальций-фосфатных покрытий на имплантатах, при создании бифазных композитов на основе фосфатов кальция и сплавах титана.

Известен способ нанесения покрытий на изделия из титана (патент RU 2453630), технический результат, в котором достигается за счет обработки поверхности титана углекислым газом, образующимся при реакции разложения гидрокарбоната кальция в водном растворе при соблюдении следующих условий: раствор гидрокарбоната натрия (ч.д.а.) приливают к раствору нитрата или хлорида кальция (х.ч.), соблюдая стехиометрическое соотношение реагентов 2:1. После начала выделения углекислого газа в реакционную смесь помещают титановые или с титановым покрытием изделия, например, пластины или штифты. Для устранения концентрационных потоков при формировании кристаллов смесь периодически перемешивают, при этом начинается более интенсивное выделение пузырьков углекислого газа. Толщина и адгезия покрытия, а также размер образующихся на титане кристаллов карбоната кальция изменяются в зависимости от времени протекания реакции и температуры. Прочные покрытия можно получить как минимум через десять минут после начала реакции при 20°C. Промытые пленки оставляют как минимум на сутки в контакте с раствором 0.6 М (NH4)2HPO 4, затем как минимум на сутки в растворе одномолярного Ca(NO3)2, затем как минимум на сутки в растворе 0.6 М (NH4)2HPO4. Образцы промывают дистиллированной водой, сушат на воздухе при температуре 20°C. Для получения композиционных покрытий, содержащих биополимеры, титан с полученным кальцитным покрытием погружают в раствор желатина и/или хондроитинсульфата. Другие модификаторы вводят в систему с самого начала синтеза кальцитного покрытия. Недостатком данного способа является его многостадийность, сложность контролирования величины адгезии и толщины кальцитного покрытия, невозможность получения биомиметического кальций-фосфатного покрытия.

Наиболее близким по технической сущности к заявляемому является способ получения биомиметического покрытия в среде синтетической жидкости (SBF), (Xiaohua Yu, Mei Wei Controlling Bovine Serum Albumin Release from Biomimetic Calcium Phosphate Coatings // Journal of Biomaterials and Nanobiotechnology, 2011, 2, 28-35). По данному способу пластины титана вертикально помещают в 1,5 мл пробирку, содержащую 1,0 мл M-SBF, затем инкубируют в водяной бане при 42°C в течение 24 час. Затем в каждую пробирку, после того как пластинка была погружена добавляли бычий сывороточный альбумин (BSA), в течение 0, 4, 6 и 8 ч соответственно. В результате чего конечная концентрация бычьего сывороточного альбумина (BSA) соответствовала 50 мкг/мл. После 24 ч инкубации в SBF, все пластинки вынимают, тщательно промывают деионизированной водой и сушат при комнатной температуре. Недостатком данного способа является его сложность и использование дорогостоящих компонентов, например сывороточного альбумина (BSA).

Задачей настоящего изобретения является разработка способа получения биомиметического кальций-фосфатного покрытия на сплавах титана из модельного раствора синовиальной жидкости человека.

Указанный технический результат достигается тем, что предложен способ получения биомиметического кальций-фосфатного покрытия на сплавах титана из модельного раствора синовиальной жидкости человека, в котором готовят раствор состава: CaCl2 - 1.3431 г/л, Na2HPO4·12H 2O - 7.4822 г/л, NaCl - 2.8798 г/л, MgCl2·6H 2O - 0.4764 г/л, Na2SO4 - 1.6188 г/л, KCl - 0.3427 г/л, NaHCO3 - 2.0160 г/л, осаждают две твердые фазы: карбонатгидроксилапатита и октакальция фосфата при температуре Т1=22÷25°C, значении pH=7,4±0,05, в течение 7 дней, фильтруют и сушат при T2=100°C в течение 2÷3 часов, до удаления химически несвязанной воды, затем готовят водную суспензию при концентрации фосфата кальция способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 =5÷10 мас. %, наносят суспензию капиллярным методом на сплав титана, сушат при температуре T3=20÷25°C, в течение 24 часов.

Для каждой из суспензии измеряли краевой угол смачивания и поверхностное натяжение приготовленных суспензий. Затем на основании уравнения Юнга-Дюпре рассчитывали энергию адгезии наносимой суспензии фосфата кальция к твердой поверхности титановых образцов.

Wa=способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 01(1+cosспособ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 ),

где Wa - энергия адгезии, способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 01 - поверхностное натяжение на границе газ - жидкость cosспособ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 - косинус краевого угла смачивания.

Полученные расчеты характеристик поверхностного натяжения, угла смачивания, энергии адгезии и когезии представлены в Таблице 1.

Таблица 1
Адгезионные характеристики суспензии фосфата кальция на титане
способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 , мас. %способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 01, МДж/м2cosспособ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 Wa, МДж/м2 Wk, МДж/м2 Wa/Wk hпокр, мкм
5 81,400,71139,19 162,800,86 220
10 91,900,17107,52 183,800,60 320
20 101,75-0,2576,31 203,500,38 480

Установлено, что с увеличением концентрации фосфата кальция в водной суспензии происходит рост поверхностного натяжения и краевого угла смачивания, это обусловлено частичным растворением полученного фосфата кальция и образованием в растворе неорганических ПИВ (поверхностно инактивных веществ). Что при концентрации суспензии более 10% приводит к несмачиваемости поверхности титанового сплава (табл.1).

Для характеристики получаемых покрытий важным является соотношение значений энергии адгезии и когезии. Для установления соотношения между энергиями адгезии и когезии (Wk) преобразуем уравнения Юнга-Дюпре:

способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350

способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 ,

так как способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 , то

способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350

Известно, что если это соотношение близко к единице, то наблюдается хорошее смачивание и т.д.

способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350

При этом установлено, что с ростом концентрации фосфата кальция в наносимой суспензии происходит уменьшение энергии адгезии, которая характеризует взаимодействия наносимой дисперсной системы с поверхностью титанового образца. Так, при увеличении содержания фосфата кальция вдвое, энергия адгезии уменьшается в 1,294 раза, а энергии когезии увеличивается в 1,129 раза, что связано с увеличением толщины покрытия в 1,454 раза с 220 мкм до 320 мкм (табл.1). Для оценки параметров смачивания обычно используют соотношение этих двух энергий, при этом, если оно близко к 1, то наблюдается смачивание, и т.д.

Полученные покрытия были проанализированы с помощью электронной растровой микроскопии. На всех микрофотографиях покрытий, полученных из всего диапазона концентрации фосфата кальция 5÷20 мас.% суспензии присутствуют агрегаты палочкообразные (в виде игл), и глобуллярные (каплеобразные). На фиг.1 представлена микрофотография агрегатов на поверхности титана при концентрации фосфата кальция способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 =5 мас.%, на фиг.2 агрегаты при концентрации фосфата кальция способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 =10 мас.%, на фиг.3 агрегаты при концентрации способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 =20 мас.%. Различие между этими микрофотографиями агрегатов состоит в изменении морфологии и средних абсолютных размеров, которые представлены в виде таблицы 2.

Таблица 2
Геометрические параметры агрегатов на поверхности титана, в зависимости от концентрации водной суспензии фосфата кальция
способ получения биомиметического кальций-фосфатного покрытия   на сплавах титана из модельного раствора синовиальной жидкости   человека, патент № 2532350 , мас.%Палочкообразные Длина, мкм Палочкообразные Ширина, мкм Глобулярные d, мкм
5 ~8~4~4
10~44 ~2~6
20-37-1 ~7

Данная морфология характерна для октакальция фосфата, карбонатгидроксилапатита, гидроксилапатита. При увеличении концентрации фосфата кальция в используемой суспензии для нанесения покрытия заметно, что агрегаты характеризуются различными размерами, так, геометрические параметры палочкообразных агрегатов уменьшаются, а сферических возрастают (табл.2), вероятно, это обусловлено наличием большего количества центров кристаллизации при более высоких концентрациях фосфата кальция в суспензии.

Таким образом, заявляемый способ позволяет получить качественное покрытие состоящие из двух фаз карбонатгидроксилапатит и октакальция фосфат, при концентрации фосфата кальция в суспензии от 5÷10 мас.%

Класс A61L27/12 фосфорсодержащии материалы, например апатит

материал заменителя костной ткани -  патент 2529802 (27.09.2014)
способ получения карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека -  патент 2526191 (20.08.2014)
способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях -  патент 2523453 (20.07.2014)
способ изготовления внутрикостных имплантатов с антимикробным эффектом -  патент 2512714 (10.04.2014)
отверждаемый биокомпозиционный материал для замещения костных дефектов -  патент 2508131 (27.02.2014)
остеогенный биорезорбируемый материал для замещения костных дефектов и способ его получения -  патент 2504405 (20.01.2014)
биоматериалы на основе фосфата кальция -  патент 2501571 (20.12.2013)
способ получения нанокристаллического кремнийзамещенного гидроксиапатита -  патент 2500840 (10.12.2013)
способ получения канафита -  патент 2499767 (27.11.2013)
пористые микросферы на основе биофосфатов кальция и магния с регулируемым размером частиц для регенерации костной ткани -  патент 2497548 (10.11.2013)

Класс A61L27/32 фосфорсодержащие материалы, например апатит

материал заменителя костной ткани -  патент 2529802 (27.09.2014)
способ получения карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека -  патент 2526191 (20.08.2014)
способ увеличения прочности цементов для медицины -  патент 2524614 (27.07.2014)
способ получения наноструктурированного кальций-фосфатного покрытия для медицинских имплантатов -  патент 2523410 (20.07.2014)
способ получения лантансодержащего покрытия -  патент 2494764 (10.10.2013)
способ изготовления внутрикостного стоматологического имплантата с углеродным нанопокрытием -  патент 2490032 (20.08.2013)
остеоинтеграционное покрытие на ортопедические и стоматологические титановые имплантаты -  патент 2472532 (20.01.2013)
способ нанесения биоактивного нано- и микроструктурированного кальцийфосфатного покрытия на имплантат из титана и его сплавов -  патент 2444376 (10.03.2012)
способ получения биологически активного покрытия -  патент 2428207 (10.09.2011)
кальций-фосфатное биологически активное покрытие на имплантате и способ его нанесения -  патент 2423150 (10.07.2011)

Класс C04B35/447 на основе фосфатов

способ получения керамики на основе ортофосфатов редкоземельных элементов -  патент 2509069 (10.03.2014)
способ упрочнения пористой кальцийфосфатной керамики -  патент 2494076 (27.09.2013)
способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью -  патент 2475461 (20.02.2013)
способ подготовки шихты для получения керамического биодеградируемого материала -  патент 2456253 (20.07.2012)
способ получения пористых гидроксиапатитовых гранул -  патент 2395476 (27.07.2010)
способ изготовления заготовок керамических изделий -  патент 2391318 (10.06.2010)
способ приготовления шихты для керамического материала на основе карбонатгидроксиапатита -  патент 2391317 (10.06.2010)
способ получения керамического биодеградируемого материала, состоящего из пирофосфата кальция и трикальцийфосфата -  патент 2391316 (10.06.2010)
способ получения керамики на основе гидроксиапатита, содержащего оксид цинка -  патент 2372313 (10.11.2009)
керамическая масса для изготовления керамических плиток -  патент 2318777 (10.03.2008)

Класс C01B25/32 фосфаты магния, кальция, стронция или бария 

биорезорбируемый материал на основе аморфного гидроксиапатита и способ его получения -  патент 2510740 (10.04.2014)
способ получения кремниймодифицированного гидроксиапатита с использованием свч-излучения -  патент 2507151 (20.02.2014)
способ получения гидроксиапатита -  патент 2505479 (27.01.2014)
способ получения нанокристаллического кремнийзамещенного гидроксиапатита -  патент 2500840 (10.12.2013)
способ получения канафита -  патент 2499767 (27.11.2013)
трехмерные матрицы из структурированного пористого монетита для тканевой инженерии и регенерации кости и способ их получения -  патент 2491960 (10.09.2013)
способ получения нанокристаллического кремний-замещенного гидроксилапатита -  патент 2489534 (10.08.2013)
способ получения аморфного трикальцийфосфата -  патент 2478570 (10.04.2013)
способ получения апатита кальция -  патент 2473461 (27.01.2013)
способ получения дикальцийфосфата -  патент 2467988 (27.11.2012)
Наверх