способ дефектоскопии теплозащитных и теплоизоляционных покрытий изделий

Классы МПК:G01N22/02 обнаружение локальных дефектов
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-производственное объединение "Техномаш" (RU)
Приоритеты:
подача заявки:
2013-12-30
публикация патента:

Изобретение относится к области дефектоскопии с использованием сверхвысоких частот, а именно к способам определения дефектов теплозащитных и теплоизоляционных покрытий изделий ракетно-космической техники. Повышение точности определения глубины залегания дефекта является техническим результатом заявленного изобретения. Способ включает в себя регистрирацию характеристики электромагнитного СВЧ-поля в контролируемом объекте на нескольких частотах, отличающийся тем, что СВЧ-датчик облучает контролируемый объект, представляющий собой слой диэлектрического материала, наклеенного на металлическую несущую конструкцию, непрерывным многочастотным сигналом и построчно сканирует внешнюю поверхность контролируемого объекта, при этом дискретно регистрируется с постоянным шагом для каждой из частот сигнал, отраженный от контролируемого объекта, при регистрации отраженного сигнала происходит его интерференция с опорным сигналом генератора, в результате которой получается радиоголограмма, при последующем восстановлении которой на получаемом изображении выявляются дефекты внутреннего строения контролируемого объекта и поверхностные дефекты на границе раздела контролируемый объект-металл. 4 ил. способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414

Формула изобретения

Способ дефектоскопии теплозащитных и теплоизоляционных покрытий изделий, заключающийся в том, что регистрируют реальную и мнимую составляющую электромагнитного СВЧ-поля в контролируемом объекте на пяти частотах, отличающийся тем, что СВЧ-датчик облучает контролируемый объект, представляющий собой слой диэлектрического материала, наклеенного на металлическую несущую конструкцию, непрерывным многочастотным сигналом и построчно сканирует внешнюю поверхность контролируемого объекта, при этом дискретно регистрируется с постоянным шагом для каждой из частот сигнал, отраженный от контролируемого объекта, при регистрации отраженного сигнала происходит его интерференция с опорным сигналом генератора, в результате которой получается радиоголограмма, при последующем восстановлении которой на получаемом изображении выявляются дефекты внутреннего строения контролируемого объекта и поверхностные дефекты на границе раздела контролируемый объект-металл, при этом восстановление радиоголограммы описывается следующими выражениями:

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 ;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 ;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 ,

где

E(x,y,способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 ) - значение сигнала в точке плоскости сканирования с координатами (x, y), зарегистрированного на частоте f;

ER (x,y,z) - восстановленное трехмерное изображение контролируемого объекта;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 =2способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 f - угловая частота;

kx и ky - пространственные частоты, соответствующие координатам x и y;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 - пространственная частота, соответствующая координате z;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 - диэлектрическая проницаемость среды;

z0 - расстояние от плоскости сканирования до поверхности контролируемого объекта.

Описание изобретения к патенту

Изобретение относится к области дефектоскопии с использованием сверхвысоких частот и может быть использовано для определения дефектов теплозащитных и теплоизоляционных покрытий изделий ракетно-космической техники.

Известен способ обнаружения неоднородностей и дефектов в диэлектрических материалах (авторское свидетельство SU 1739265 от 27.12.1989 г.), заключающийся в облучении электромагнитной волной диэлектрического материала, измерении мощности падающей волны, приеме и измерении отраженной от диэлектрического материала волны, при этом по отношению мощностей падающей и отраженной волн судят о наличии неоднородностей в диэлектрическом материале.

Известен также способ электромагнитной дефектоскопии (патент RU 2146047 от 03.03.1999 г.), заключающийся в том, что контролируемое изделие облучают электромагнитными сигналами под углом к его поверхности, принимают отраженные электромагнитные сигналы, измеряют параметры отраженных электромагнитных сигналов и по результатам измерений определяют наличие дефектов, при этом облучение осуществляют через диэлектрическую пластину, которую устанавливают на поверхности контролируемого изделия.

Недостатком приведенных выше аналогов является невозможность обнаружения дефектов теплозащитных и теплоизоляционных покрытий, наклеенных на металлическую несущую конструкцию.

Наиболее близким аналогом является способ дефектоскопии (авторское свидетельство SU 1748029 от 11.10.90 г.), заключающийся в том, что регистрируют характеристики электромагнитного СВЧ-поля в контролируемом объекте на нескольких частотах и по этим характеристикам определяют параметр дефекта в объекте, при этом для повышения точности определения глубины залегания дефекта воздействуют на контролируемый объект поверхностной электромагнитной волной и измеряют изменение мощности этой волны на двух фиксированных частотах.

Недостатком данного способа является невозможность обнаружения дефектов теплозащитных и теплоизоляционных покрытий, наклеенных на металлическую несущую конструкцию.

Техническим результатом настоящего изобретения является устранение указанного выше недостатка за счет использования многочастотного непрерывного излучения и регистрации отраженного неоднородностями сигнала, который перемножается с опорным сигналом, имеющим постоянную фазу, в результате регистрируется радиоголограмма, которая при последующем восстановлении позволяет выявить неоднородности обследуемого объекта, при этом сигнал, отраженный от плоской подстилающей металлической поверхности, имеющий постоянную фазу, на регистрируемой радиоголограмме отсутствует.

Технический результат достигается тем, что в отличие от известного способа СВЧ-датчик облучает контролируемый объект, представляющий собой слой диэлектрического материала, наклеенного на металлическую несущую конструкцию, непрерывным многочастотным сигналом и построчно сканирует внешнюю поверхность контролируемого объекта, при этом дискретно регистрируется с постоянным шагом для каждой из частот сигнал, отраженный от контролируемого объекта, при регистрации отраженного сигнала происходит его интерференция с опорным сигналом генератора, в результате которой получается радиоголограмма, при последующем восстановлении которой на получаемом изображении выявляются дефекты внутреннего строения контролируемого объекта и поверхностные дефекты на границе раздела контролируемый объект-металл, при этом восстановление радиоголограммы описывается следующими выражениями:

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 ;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 ;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 ,

где

E(x,y,способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 ) - значение сигнала с точке плоскости сканирования с координатами (x,y), зарегистрированного на частоте f;

E R(x,y,z) - восстановленное трехмерное изображение контролируемого объекта;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 =2способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 f - угловая частота;

kx и k y - пространственные частоты, соответствующие координатам x и y;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 - пространственная частота, соответствующая координате z;

способ дефектоскопии теплозащитных и теплоизоляционных покрытий   изделий, патент № 2532414 - диэлектрическая проницаемость среды;

z0 - расстояние от плоскости сканирования до поверхности контролируемого объекта.

Сущность заявленного изобретения поясняется графическими материалами, на которых:

- на фиг.1 представлен образец теплоизоляции с тремя искусственно заложенными дефектами (поз.1 обозначен искусственный дефект);

- на фиг.2 приведен результат восстановления радиоголограммы образца теплоизоляции с тремя искусственно заложенными дефектами (поз.1 показано изображение искусственного дефекта);

- на фиг.3 представлен образец теплоизоляции с металлическими спицами, воткнутыми в пенополиуретановое покрытие образца (поз.1 и 2 обозначены спицы, поз.3 - лист алюминиевого сплава АМгб толщиной 5 мм, поз.4 - слой полиуретана толщиной 42 мм);

- на фиг.4 приведен результат восстановления радиоголограмм в эксперименте со спицами.

Заявленный способ осуществляют следующим образом.

Для технической реализации способа был изготовлен образец теплоизоляции с искусственно заложенными дефектами 1 (фиг.1), представляющий собой пакет теплоизоляции, полученный методом напыления пенополиуретана ППУ-17Н толщиной 42 мм на лист алюминиево-магниевого сплава АМгб толщиной 5 мм с нанесенным подслоем, с последующей механической обработкой поверхности ППУ-17Н до заданной толщины.

Для проведения экспериментов использовался голографический подповерхностный радиолокатор «РАСКАН-5/15000» с рабочим диапазоном частот 13.8-14.6 ГГц, обладающий высокой разрешающей способностью и чувствительностью к неоднородностям исследуемых объектов. Данный прибор обеспечивал регистрацию реальной и мнимой части сигнала одновременно на пяти частотах (f=13.8, f=14, f=14.2, f=14.4, f=14.6 ГГц). Для регистрации составляющих сигнала Е в качестве опорного сигнала используется сигнал генератора СВЧ-колебаний, проходящий напрямую к приемнику. Относительно этого сигнала определяется реальная и мнимая части. Выбор этого прибора обуславливался тем, что пенополиуретан ППУ-17Н обладает низким коэффициентом поглощения электромагнитных волн и диэлектрической проницаемостью, мало отличающейся от единицы. При проведении экспериментов по обследованию образцов теплозащитных покрытий использовался метод ручного построчного сканирования поверхности. Поверхность образцов являлась плоскостью сканирования (x,y). Перпендикуляр к поверхности образца принят за ось координат z. В ходе сканирования происходит дискретная регистрация составляющих поля. Минимальный шаг дискретизации определялся энкодером. Шаг дискретизации задавался исходя из требований к минимально обнаруживаемому дефекту. Применительно к изделиям РКТ использовался шаг, равный 0.5 см. Результаты обследования образца теплоизоляции с искусственно заложенными дефектами представлены на фиг.2. На восстановленной радиоголограмме хорошо видны все три искусственно заложенных дефекта.

Для лучшего понимания процессов, происходящих в относительно прозрачных диэлектрических средах, расположенных на металлической поверхности, были проведены эксперименты со спицами, которые втыкались в боковую поверхность образца теплоизоляции (фиг.3). В образец теплоизоляции были воткнуты две металлические спицы 1 и 2. Спица 1 была погружена параллельно поверхности металла на глубину 13 см на расстоянии от поверхности покрытия 20 мм. Вторая спица была погружена в ППУ-17Н на глубину 13.5 см под небольшим углом к поверхности. При этом на наклонной спице при регистрации голограмм должен наблюдаться так называемый эффект «зебры», когда контраст объекта меняется по мере изменения расстояния между антенной и объектом. На фиг.4 показан результат восстановления радиоголограмм в эксперименте со спицами.

Проведенные эксперименты показали, что предлагаемый способ обследования теплозащитных и теплоизоляционных покрытий, расположенных на металлической основе, с помощью топографических подповерхностных радиолокаторов позволяет обнаруживать неоднородности и дефекты в их толще.

Анализ, проведенный заявителем по известному ему уровню техники, показал, что предлагаемое изобретение, обладающее новизной и промышленной применимостью, отвечает в отношении совокупности его существенных признаков требованию критерия «изобретательский уровень», из уровня техники не известен также механизм достижения технического результата, раскрытого в материалах заявки.

Класс G01N22/02 обнаружение локальных дефектов

способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев -  патент 2516238 (20.05.2014)
свч способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле -  патент 2507506 (20.02.2014)
ультразвуковой иммерсионный двухэлементный преобразователь -  патент 2491535 (27.08.2013)
способ обнаружения дефектов в трубопроводах -  патент 2474812 (10.02.2013)
способ регистрации сигналов акустической эмиссии в металлах -  патент 2372615 (10.11.2009)
устройство зондирования строительных конструкций -  патент 2282875 (27.08.2006)
способ и устройство для обнаружения и сортировки от посторонних примесей в сигаретах -  патент 2270591 (27.02.2006)
радиоинтроскоп -  патент 2256904 (20.07.2005)
устройство зондирования строительных конструкций -  патент 2234694 (20.08.2004)
способ электромагнитной дефектоскопии -  патент 2146047 (27.02.2000)