способ определения коэффициента диффузии влаги
Классы МПК: | G01N13/00 Исследование поверхностных или граничных свойств, например смачивающей способности; исследование диффузионных эффектов; анализ материалов путем определения их поверхностных, граничных и диффузионных эффектов; исследование или анализ поверхностных структур в атомном диапазоне |
Автор(ы): | Беляев Вадим Павлович (RU), Беляев Павел Серафимович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ (RU) |
Приоритеты: |
подача заявки:
2013-07-30 публикация патента:
10.11.2014 |
Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии влаги в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии влаги заключается в создании в исследуемом образце равномерного начального влагосодержания, приведении плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием. Также способ включает измерение изменения во времени сигнала гальванического преобразователя, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента диффузии. При этом производят импульсное увлажнение плоской поверхности исследуемого образца по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: , где max - время достижения максимума на кривой изменения ЭДС гальванического преобразователя, r0 - расстояние между линией импульсного увлажнения и линией расположения электродов гальванического преобразователя. Техническим результатом является повышение оперативности эксперимента и обеспечение возможности неразрушающего контроля коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов. 1 ил., 1 табл.
Формула изобретения
Способ определения коэффициента диффузии влаги, заключающийся в создании в исследуемом образце равномерного начального влагосодержания, приведении плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, отличающийся тем, что производят импульсное соприкосновение плоской поверхности исследуемого изделия с источником влаги по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле:
где - время достижения максимума на кривой изменения ЭДС гальванического преобразователя;
- расстояние между линией импульсного увлажнения и линией расположения электродов гальванического преобразователя.
Описание изобретения к патенту
Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии влаги в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности.
Известен способ определения коэффициента массопроводности и потенциалопроводности массопереноса (а.с. 174005, кл. G01N 25/56, 1965), заключающийся в импульсном увлажнении слоя материала и измерении на заданном расстоянии от этого слоя изменения влагосодержания материала во времени. Коэффициент массопроводности вычисляется по установленной зависимости. Недостатками этого способа являются осуществление разрушающего контроля опытного образца при размещении датчиков во внутренних слоях исследуемого тела, большая трудоемкость метода при подготовке образцов, необходимость индивидуальной градуировки датчиков по каждому материалу.
Наиболее близким является способ определения коэффициента диффузии влаги в капиллярно-пористых материалах (Современные энергосберегающие тепловые технологии (сушка и тепловые процессы) СЭТТ-2005. - Мат-лы второй научн.-практ. конф. - М. - 2005, Т.2, с.315-318). В методе используется модель взаимодействия двух полубесконечных тел. Для реализации метода изготавливают три одинаковых образца в форме параллелепипедов, имеющих одну поверхность массообмена образцов друг с другом - плоскость контакта. Остальные поверхности образцов влагоизолируют. В одном из образцов (образец № 2) делают отверстия для размещения двух электродов гальванического преобразователя локального влагосодержания в плоскости, отстоящей на заданном расстояния от поверхности массообмена данного образца с образцами № 1 и № 3. В образцах № 2 и № 3 перед началом эксперимента создают одинаковое, а в образце № 1 несколько большее равномерное влагосодержание. В процессе эксперимента образец № 2 приводят в соприкосновение по плоскости массообмена сначала с образцом № 1, затем образец № 1 меняют на образец № 3, получая тем самым импульсное воздействие от плоского источника влаги в неограниченной среде.
Недостатками этого способа являются необходимость подготовки образцов заданной конфигурации, что связано с затратами времени и средств; осуществление разрушающего контроля при размещении электродов датчика во внутренних слоях образца; необходимость создания различных значений равномерного влагосодержания в образцах значительной толщины, влагоизолированных по всем поверхностям кроме поверхности массообмена, что связано со значительными затратами времени.
Техническая задача предлагаемого технического решения предполагает повышение оперативности эксперимента и обеспечение возможности неразрушающего контроля коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов.
Техническая задача достигается тем, что в способе определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов, имеющих по крайней мере одну плоскую поверхность (например, цементные или гипсовые плиты), включающем создание в исследуемом образце равномерного начального влагосодержания, приведение плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием, измерение изменения во времени сигнала гальванического преобразователя на фиксированном расстоянии от области массообмена образца с источником массы, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента диффузии. В отличие от прототипа (Современные энергосберегающие тепловые технологии (сушка и тепловые процессы) СЭТТ-2005. - Мат-лы второй научн.-практ. конф. - М. - 2005, Т.2, с.315-318) производят импульсное соприкосновение плоской поверхности исследуемого изделия с источником влаги по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, измеряют изменение во времени ЭДС гальванического преобразователя и рассчитывают коэффициент диффузии влаги исследуемого материала по установленной зависимости, что обеспечивает неразрушающий контроль массивного изделия из капиллярно-пористого материала и повышение оперативности определения коэффициента диффузии влаги в нем.
Сущность предлагаемого способа заключается в следующем (см. чертеж): к плоской поверхности ABCD массивного изделия 1 с равномерным начальным распределением влаги (в том числе и нулевым) прижимается зонд с импульсным линейным источником массы и расположенными в двух точках на линии, параллельной линии O1O2 нанесения импульсного увлажнения и на заданном расстоянии r0 от нее, электродами 3, 4 гальванического преобразователя (ГП). Расстояние между электродами ГП равно r1. После подачи импульса влаги (мгновенного увлажнения линии 5 длиной L поверхности изделия) зонд обеспечивает гидроизоляцию поверхности изделия в зоне действия источника и прилегающей к ней области контроля распространения влаги. После этого фиксируют изменение ЭДС гальванического преобразователя во времени.
Процесс распространения влаги в массивном изделии после нанесения такого импульса описывается краевой задачей массопереноса в неограниченной среде при нанесении импульсного воздействия от линейного источника массы:
; ; ;
где U(r, ) - концентрация влаги в исследуемом изделии на расстоянии r от линейного источника импульса массы в момент времени ; D - коэффициент диффузии влаги; (r, ) - -функция Дирака; - плотность абсолютно сухого исследуемого материала; W - мощность «мгновенного» источника массы, подействовавшего в начале координат r=0, вычисляемая как отношение количества влаги (подведенной к контролируемому изделию) к длине линии импульсного воздействия L; U0 - начальное влагосодержание исследуемого материала в момент времени =0.
В данном случае исследуемое изделие рассматривается как половина неограниченного цилиндра, образованная путем деления на две части исходного цилиндра плоскостью ABCD, проходящей через линию 5 импульсного воздействия. При этом длина линии импульсного воздействия L должна быть не менее (20 r 0+r1), где r0 - расстояние от линии расположения электродов гальванического преобразователя до линии нанесения импульсного воздействия; r1 - расстояние между электродами гальванического преобразователя на линии, параллельной линии импульсного воздействия. Объем контролируемого изделия при этом должен превышать половину сплошного цилиндра 2 радиусом не менее 10 r0 и высотой не менее L, образованного плоскостью, проходящей через его ось O1O2 и расположенной в плоскости ABCD контакта измерительного зонда и контролируемого изделия.
В этом случае изменение влагосодержания в зоне действия источника описывается функцией:
.
Расчетная формула для определения коэффициента диффузии имеет вид:
где max - время, соответствующее максимуму на кривой U(r0, ) изменения влагосодержания на расстоянии r0 от источника.
В предлагаемом техническом решении для фиксирования максимума влагосодержания на расстоянии r 0 от источника применялись миниатюрные электроды ГП, которые располагались в двух точках плоской поверхности контролируемого изделия на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии r0 от нее. ЭДС такого преобразователя определяется энергией связи влаги с материалом, контактирующим с поверхностями его электродов.
Так как распространение влаги при организации данного способа осуществляется радиально относительно линии импульсного воздействия, эквипотенциальные поверхности представляют собой поверхности цилиндров, которые в плоскости контакта измерительного зонда с контролируемым изделием образуют прямые линии, параллельные линии импульсного воздействия. Поэтому ЭДС гальванического преобразователя в конечном итоге однозначно связана с влагосодержанием капиллярно-пористого материала именно на линии, отстоящей на расстоянии r0 от линии импульсного увлажнения материала.
Так как статическая характеристика ГП монотонна, то в момент достижения влагосодержанием U(r0, ) своего максимального значения ЭДС ГП также достигает своего максимума. Это позволяет не проводить градуировку гальванических преобразователей по каждому исследуемому материалу, а определять время достижения максимума на кривой изменения влагосодержания по времени достижения максимума ЭДС гальванического преобразователя.
Это позволяет существенно повысить оперативность измерения коэффициента диффузии влаги в массивных изделиях из капиллярно-пористых материалов без их разрушения.
В таблице представлены результаты 20-кратных измерений коэффициента диффузии влаги в плитах толщиной 50 мм, отформованных из пеногипсобетона, плотностью в сухом состоянии 550 кг/м куб.
Результаты экспериментальных исследований коэффициента диффузии влаги в пеногипсобетоне (r 0=3,0·10-3, м) | ||||||
№ опыта | Время достижения максимума кривой E(r, ), с | Коэффициент диффузии D i·109, м2/с | Математическое ожидание , м2/с | Абсолютная погрешность измерения , м2/с | , м4/с2 | Относительная погрешность измерения, % |
1 | 377,5 | 5,96 | +1,14 | 1,2996 | ||
2 | 413,6 | 5,44 | +0,62 | 0,3844 | ||
3 | 447,3 | 5,03 | +0,21 | 0,0441 | ||
4 | 568,2 | 3,96 | -0,86 | 0,7396 | ||
5 | 533,2 | 4,22 | -0,60 | 0,3600 | ||
6 | 595,2 | 3,78 | -1,04 | 1,0816 | ||
7 | 484,9 | 4,64 | -0,18 | 0,0324 | ||
8 | 582,9 | 3,86 | -0,96 | 0,9216 | ||
9 | 476,7 | 4,72 | -0,10 | 0,0100 | ||
10 | 382,7 | 5,88 | 4,82 | +1,06 | 1,1236 | 8,6 |
11 | 419,8 | 5,36 | +0,54 | 0,2916 | ||
12 | 511,4 | 4,40 | -0,42 | 0,1764 | ||
13 | 380,1 | 5,92 | +1,10 | 1,2100 | ||
14 | 372,5 | 6,04 | +1,22 | 1,4884 | ||
15 | 367,6 | 6,12 | +1,30 | 1,6900 | ||
16 | 571,1 | 3,94 | -0,88 | 0,7744 | ||
17 | 601,6 | 3,74 | -1,08 | 1,1664 | ||
18 | 420,6 | 5,35 | +0,53 | 0,2809 | ||
19 | 618,1 | 3,64 | -1,18 | 1,3924 | ||
20 | 516,1 | 4,36 | -0,46 | 0,2116 |
Величина импульса влаги составляла 60 микролитров, длина линии импульсного воздействия 80 мм. Расстояние от линейного источника влаги до линии расположения электродов гальванического преобразователя - 3 мм, расстояние между электродами гальванического преобразователя - 5 мм.
Погрешность результата измерения равна половине доверительного интервала и определяется следующим образом:
,
где - математическое ожидание случайной величины;
- среднеквадратическая погрешность отдельного измерения;
t ,n - коэффициент Стьюдента при доверительной вероятности и количестве измерений n.
Проведенные экспериментальные исследования показали, что случайная погрешность результата определения коэффициента диффузии влаги в пеногипсобетоне при двадцатикратных испытаниях (t ,n=2,1 при =0,95) составляет 8,6%. Длительность эксперимента не превышает 11 минут.
Класс G01N13/00 Исследование поверхностных или граничных свойств, например смачивающей способности; исследование диффузионных эффектов; анализ материалов путем определения их поверхностных, граничных и диффузионных эффектов; исследование или анализ поверхностных структур в атомном диапазоне