способ локальной обработки материала при азотировании в тлеющем разряде
Классы МПК: | C23C8/36 с использованием ионизированных газов, например ионоазотирование |
Автор(ы): | Будилов Владимир Васильевич (RU), Рамазанов Камиль Нуруллаевич (RU), Хусаинов Юлдаш Гамирович (RU), Рамазанов Игорь Степанович (RU), Золотов Илья Владимирович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" (RU) |
Приоритеты: |
подача заявки:
2013-04-08 публикация патента:
10.12.2014 |
Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает размещение стальной детали и перфорированного экрана в вакуумной камере, осуществление катодного распыления, вакуумный нагрев детали в плазме тлеющего разряда, состоящей из смеси азотсодержащего и инертного газов, с формированием участков с разнородной структурой стали, при этом переходный участок между участками с разнородной структурой имеет микронеоднородную структуру с постепенным изменением одного вида в другой. Разнородную структуру формируют в виде макронеоднородной структуры стали посредством перфорированного экрана, выполненного с отверстиями диаметром d, причем d>4·l, где l - толщина катодного слоя, и плотно прилегающего к обрабатываемой детали для обеспечения возможности получения на поверхности участков, азотированных в тлеющем разряде, чередующихся с неазотированными участками. Обеспечивается повышение контактной долговечности и износостойкости упрочненного слоя за счет локальной обработки и создания макронеоднородной структуры материала. 4 ил., 1 пр.
Формула изобретения
Способ азотирования стальной детали в плазме тлеющего разряда, включающий размещение стальной детали и перфорированного экрана в вакуумной камере, осуществление катодного распыления, вакуумный нагрев детали в плазме тлеющего разряда, состоящей из смеси азотсодержащего и инертного газов, с формированием участков с разнородной структурой стали, при этом переходный участок между участками с разнородной структурой имеет микронеоднородную структуру с постепенным изменением одного вида в другой,
отличающийся тем, что разнородную структуру формируют в виде макронеоднородной структуры стали посредством перфорированного экрана, выполненного с отверстиями диаметром d, причем d>4·l, где l - толщина катодного слоя, и плотно прилегающего к обрабатываемой детали для обеспечения возможности получения на поверхности участков, азотированных в тлеющем разряде, чередующихся с неазотированными участками.
Описание изобретения к патенту
Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов.
Известен способ (патент РФ № 2127330, кл. С23С 8/26, 10.03.99) термической обработки для образования высокопрочного аустенитного поверхностного слоя в нержавеющих сталях, включающий азотирование в содержащей азот газовой атмосфере при 1000-1200°С и последующее охлаждение со скоростью, позволяющей избежать выделения нитрида.
Недостатками аналога являются:
- сложность оборудования и технологии, а также необходимость проектирования специального оборудования;
- отсутствие возможности создания неоднородной структуры.
Известен способ (патент РФ № 2362831, кл. С23С 8/38, 27.07.2009) азотирования стальных изделий, включающий помещение изделия в емкость, заполненную азотосодержащей средой, подачу на изделие, являющееся катодом, и анод постоянного напряжения для создания между изделием и анодом электрического поля и осуществление процесса насыщения поверхности изделия азотом. В качестве анода и азотосодержащей среды используют раствор электролита из следующего ряда веществ: раствор нашатыря, раствор аммиака, а перед процессом насыщения поверхности изделия азотом осуществляют плавное изменение напряжения в интервале 15-150 В, насыщение проводят при повышении напряжения в интервале 150-315 В, при этом азотирование проводят при атмосферном давлении.
Недостатком аналога является отсутствие возможности создания неоднородной структуры.
Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ создания неоднородной структуры материала при азотировании в тлеющем разряде (патент РФ № 2409699, кл. С23С 8/36, С23С 8/24, 20.01.2011), включающий катодное распыление, вакуумный нагрев изделий в плазме тлеющего разряда повышенной плотности, состоящей из смеси азотосодержащего и инертного газов, формируемой между деталью и экраном. С помощью экрана с ячейками формируют неоднородную плазму тлеющего разряда и создают дифференцированную структуру в материале путем получения в нем разнородных структур, при этом переходный участок между участками с различной структурой имеет микронеоднородную структуру с постепенным изменением от одного вида в другой.
Недостатками ближайшего аналога являются:
- сложность конструкции по сравнению с предлагаемым;
- сложность отладки технологического процесса;
- сложность создания и контроля неоднородной плазмы;
- отсутствие возможности сохранения на поверхности сплошной матрицы микротвердости исходного материала.
Задачей, на решение которой направлено предлагаемое изобретение, является повышение прочностных и трибологических характеристик материала.
Технический результат - повышение контактной долговечности и износостойкости упрочненного слоя за счет локальной обработки и создания макронеоднородной структуры материала.
Задача решается, а технический результат достигается тем, что в способе азотирования стальной детали в плазме тлеющего разряда, включающем размещение стальной детали и перфорированного экрана в вакуумной камере, осуществление катодного распыления, вакуумный нагрев детали в плазме тлеющего разряда, состоящей из смеси азотсодержащего и инертного газов, с формированием участков с разнородной структурой стали, при этом переходный участок между участками с разнородной структурой имеет микронеоднородную структуру с постепенным изменением одного вида в другой, согласно изобретению разнородную структуру формируют в виде макронеоднородной структуры стали посредством перфорированного экрана, выполненного с отверстиями диаметром d, который определяют по выражению d>4·l, где l - толщина катодного слоя, и плотно прилегающего к обрабатываемой детали, с возможностью получения на поверхности участков, азотированных в тлеющем разряде, чередующихся с неазотированными участками.
Дифференцированная обработка, сочетающая общие (объемные) и локальные (местные) воздействия на материал, позволяет получить регулярную макронеоднородную структуру как на поверхности, так и в объеме сплавов. В ряде случаев исходное горячекатаное или литое состояние можно рассматривать как результат общей обработки, обеспечивающей требуемые свойства исходному материалу. Дифференцированная структура создается в мономатериале путем получения в нем разнородных структур. Между участками с различной структурой существует переходный участок с микронеоднородной структурой, в котором структура постепенно изменяется от одного вида в другой, что обеспечивает хорошую совместимость между участками с различными свойствами. Тем самым возможно получение участков с чередованием прочностных и пластических свойств как на поверхности, так и в объеме материала, то есть макронеоднородных структур [Л.С. Малинов, В.Л. Малинов. Ресурсосберегающие экономнолегированные сплавы и упрочняющие технологии, обеспечивающие эффект самозакалки. - Мариуполь: ПГТУ, 2009, с.230-231]. Присутствие участков повышенной пластичности подавляет развитие микротрещин, возникших при нагружении в участках высокой твердости, и повышает конструктивную прочность [Лазерная обработка железомарганцовистых сталей / Л.С. Малинов, Е.Я. Харланова, С.В. Данно и др. // Физика и химия обработки материалов. - 1987. - № 2. - С.47-49]. Участки высокой твердости способствуют повышению износостойкости. Таким образом, наличие на поверхности материала макронеоднородных структур позволяет сочетать высокие физико-механические и триботехнические свойства поверхностного слоя деталей машин.
Суммарная упрочненная зона может достигать от 25% до 60% [Андрияхин В.М., Васильев В.А., Седунов В.К., Чеканова Н.Т. Влияние схемы упрочнения гильз цилиндров лазерным излучением на износостойкость. Металловедение и термическая обработка металлов, 1982, № 9, с. 41-43; Любченко А.Л., Липовецкий Л.С., Глушкова Д.Б. Повышение износостойкости стальных поверхностей путем лазерной обработки. Вестник Харьковского национального автомобильно-дорожного университета. 2006. № 33. С.35-37]. Зазор между перфорированным экраном и поверхностью материала должен быть менее 1 мм, так как тлеющий разряд при таких зазорах не образуется и не доступен для осаждения продуктов реакций [Лахтин Ю.М., Коган Я.Д. Азотирование стали. М.: Машиностроение, 1976. С.162-163].
Существо изобретения поясняется чертежами.
На фиг.1 изображены схема обработки и распределение микротвердости по поверхности упрочненного слоя в тлеющем разряде с перфорированным экраном, где d - диаметр отверстия экрана, а - шаг перфораций. На фиг.2 изображен перфорированный экран, где d - диаметр отверстий экрана (d>4·l, l - толщина катодного слоя), a, b - шаги перфораций. На фиг.3 и на фиг.4 изображены примеры реализации способа в виде трехмерных моделей. На фиг.: 1 - деталь; 2 - экран; 3 - кривая изменения твердости.
Пример конкретной реализации способа.
Способ осуществляется следующим образом. В вакуумной камере устанавливают обрабатываемую деталь и перфорированный экран из стали 13Х11Н2 В2МФ-Ш (фиг.1). Перфорированный экран изображен на фиг.2. Далее подключают их к отрицательному электроду, герметизируют камеру и откачивают воздух до давления 10 Па. Затем после эвакуации воздуха камеру продувают рабочим газом 5-15 минут при давлении 1000-1330 Па, затем откачивают камеру до давления 50 Па, подают на электроды напряжение и возбуждают тлеющий разряд. При напряжении 800-1000 В осуществляют катодное распыление. После 10-15-минутной обработки по режиму катодного распыления напряжение понижают до рабочего, а давление повышают до 300 Па, необходимого для зажигания тлеющего разряда. В качестве рабочего газа использовали аргон и смесь азота, аргона и ацетилена (N2 25%+Ar 70%+C2H2 5%). Азотирование в тлеющем разряде производят при p=300 Па, j=1-2 мА/см2, U=600-650 В. Все процессы проходят за один технологический цикл, в одной камере и в одной атмосфере. После обработки изделие охлаждается вместе с вакуумной камерой под вакуумом. В результате обработки твердость азотированных участков составила H =11500 МПа, неазотированных, как и у исходного материала, H =4700 МПа. Характер распределения микротвердости по поверхности упрочненного слоя изображен на фиг.1. Данный способ позволяет создавать макронеоднородную структуру как на плоских (фиг.3), так и на цилиндрических наружных (фиг.4) и внутренних поверхностях. Созданная макронеоднородная структура повышает контактную долговечность и износостойкость, вследствие чего повышаются прочностные и трибологические характеристики материала.
Класс C23C8/36 с использованием ионизированных газов, например ионоазотирование