Электролитическое нанесение покрытий с помощью химических реакций на поверхности, например формирование преобразованных слоев – C25D 11/00

МПКРаздел CC25C25DC25D 11/00
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C25 Электролитические способы; электрофорез; устройства для них
C25D Нанесение покрытий электролитическим способом или способом электрофореза; гальванопластика; соединение рабочих частей электролизом; устройства для этих целей
C25D 11/00 Электролитическое нанесение покрытий с помощью химических реакций на поверхности, например формирование преобразованных слоев

C25D 11/02 .анодирование
C25D 11/04 ..алюминия или его сплавов
C25D 11/06 ...из электролитов
C25D 11/08 ....содержащих неорганические кислоты
C25D 11/10 ....содержащих органические кислоты
C25D 11/12 ...многократное анодирование, например в различных электролитах
C25D 11/14 ...получение равномерно окрашенных пленок
C25D 11/16 ...предварительная обработка
C25D 11/18 ...последующая обработка, например уплотнение пленок
покрытие лаком  B 44D
C25D 11/20 ....последующая электролитическая обработка
C25D 11/22 .....для получения окрашенных пленок
C25D 11/24 ....последующая химическая обработка
C25D 11/26 ..тугоплавких металлов или их сплавов
C25D 11/28 ..актиноидов или их сплавов
C25D 11/30 ..магния или его сплавов
C25D 11/32 ..полупроводниковых материалов
C25D 11/34 ..металлов или сплавов, не предусмотренное в рубриках  11/04
C25D 11/36 .фосфатирование
C25D 11/38 .хроматирование

Патенты в данной категории

ЭЛЕКТРОЛИТ ДЛЯ АНОДИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ ПЕРЕД НАНЕСЕНИЕМ МЕДНЫХ ГАЛЬВАНОПОКРЫТИЙ

Изобретение относится к области гальванотехники. Электролит содержит ортофосфорную кислоту 15% об., серную кислоту 15% об., фторсодержащее неорганическое вещество, выбранное из группы, включающей бифторид аммония, бифтористую кислоту, фторид натрия 4-15 г/л и воду - остальное. Технический результат - снижение энергетических и материальных затрат, снижение времени технологического процесса при высоком качестве покрытия. 2 табл., 2 ил., 2 пр.

2529328
выдан:
опубликован: 27.09.2014
НЕРЖАВЕЮЩАЯ СТАЛЬ С ХОРОШЕЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ ДЛЯ ТОПЛИВНОГО ЭЛЕМЕНТА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Изобретение относится к области металлургии, а именно к получению листа из нержавеющей стали для разделителя топливного элемента. Лист выполнен из стали, содержащей, в мас.% С: 0,03 или меньше, Si: 1,0 или меньше, Mn: 1,0 или меньше, S: 0,01 или меньше, Р: 0,05 или меньше, Al: 0,20 или меньше, N: 0,03 или меньше, Cr: от 20 до 40, по меньшей мере, один из металлов, выбранный из Nb, Ti и Zr, в сумме: 1,0 или меньше, Fe и неизбежные примеси остальное. На поверхность листа нанесено покрытие, характеризующееся отношением определенных методом рентгеновской фотоэлектронной спектроскопии интенсивностей [(OO/OH)/(Cr/Fe)], равным 1,0 или больше. Покрытие сформировано анодной поляризацией поверхности нержавеющей стали в растворе электролита с концентрацией сульфата натрия от 0,1 до 3,0 моль/л и уровнем рН, равным 7 или меньше, при потенциале 0,5 В или больше по отношению к стандартному водородному электроду в течение 10 секунд или более. Сталь обладает высокой коррозионной стойкостью во всем широком диапазоне потенциалов. 4 н. и 11 з.п. ф-лы, 1 ил., 7 табл., 5 пр.

2528520
выдан:
опубликован: 20.09.2014
СПОСОБ АНТИКОРРОЗИОННОЙ ОБРАБОТКИ СПЛАВОВ АЛЮМИНИЯ

Изобретение относится к способам защиты металлов от коррозии и предназначено для повышения коррозионной стойкости покрытий на сплавах алюминия, используемых в агрессивной хлоридсодержащей среде. Способ включает нанесение покрытия методом плазменно-электролитического оксидирования в биполярном гальваностатическом режиме в условиях микроплазменных разрядов при эффективной плотности тока i а=iк=5-10 А/дм2, продолжительности анодных и катодных импульсов 0,02 с в течение 5-10 мин в водном электролите, содержащем, г/л: тринатрийфосфат 45-55, тетраборат натрия 20-30 и вольфрамат натрия 3-5, и уплотнение нанесенного покрытия. Уплотнение осуществляют в водном растворе ингибитора коррозии, содержащего олеат натрия, а также алифатические или ароматические карбоновые кислоты, в качестве которого преимущественно используют ИФХАН-25 либо ИФХАН-39, путем погружения на 50-60 мин при температуре 95-100°C с последующей гидрофобизацией в этилацетатном растворе политетрафторэтилена. Технический результат - увеличение эффективности антикоррозионной обработки и обеспечение высоких показателей антикоррозионной защиты для широкого круга обрабатываемых сплавов алюминия при одновременном повышении экологической безопасности способа, улучшении условий труда и снижении затрат времени. 2 з.п. ф-лы, 1 табл., 13 пр.

2528285
выдан:
опубликован: 10.09.2014
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА СПЛАВАХ ВЕНТИЛЬНЫХ МЕТАЛЛОВ

Изобретение относится к области обработки поверхности изделий и может быть использовано в машиностроении и других отраслях промышленности. Способ включает микродуговое оксидирование изделия в щелочном электролите с последующим импрегнированием оксидированной поверхности полимером, оплавление верхнего слоя полимера и охлаждение, при этом микродуговое оксидирование проводят в анодно-катодном режиме при значениях плотностей анодного и катодного токов 0,5-30 А/дм2 и соотношении между ними Iк/I а=1,1-1,2, а в качестве полимера используют сверхвысокомолекулярный полиэтилен. Технический результат: повышение износостойкости и снижение коэффициента трения за счет создания однородной структуры и высокого качества поверхности. 3 з.п. ф-лы, 2 табл., 6 пр.

2527110
выдан:
опубликован: 27.08.2014
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЙ ПЕНТАОКСИДА ТАНТАЛА НА ПОДЛОЖКЕ

Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами. Способ формирования покрытия пентаоксида тантала на подложке включает формирование покрытия из прекурсора - фторидного соединения тантала, при этом покрытие формируют методом плазменно-электролитической обработки подложки импульсным током во фтортанталатном электролите на проводящей металлической подложке из титана или его сплава в диапазоне напряжений от 50 до 300 В в потенциостатическом режиме. Технический результат: упрощение способа нанесения покрытия пентаоксида тантала, при этом осуществление процесса не требует сложного специального оборудования и дорогостоящих реагентов. 1 з.п. ф-лы, 7 пр.

2518257
выдан:
опубликован: 10.06.2014
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНА

Изобретение относится к области гальванотехники и может быть использовано в промышленности для формирования тонких слоев защитно-декоративных покрытий нитрида титана на поверхностях из титана и его сплавов. Способ электролитического формирования слоя нитрида титана на поверхности титана и его сплава включает анодную поляризацию изделия при постоянном токе в электролите на основе полярных органических растворителей в присутствии воды и 0,1-0,3 мас.% соли аммония в качестве электролитической добавки, при этом электролиз проводят при комнатной температуре электролита. Технический результат: получение тонких, плотных и равномерных слоев нитрида титана различной толщины на деталях различной конфигурации. 8 пр.

2516142
выдан:
опубликован: 20.05.2014
УСТРОЙСТВО ДЛЯ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ

Изобретение относится к области гальванотехники и может быть использовано в машиностроении для упрочнения или ремонта поверхностей деталей путем нанесения оксидного покрытия. Устройство содержит источник питания и ванну для электролита, два неуправляемых вентиля и два управляемых вентиля, конденсатор и систему управления, датчик тока и два датчика напряжения, ключ и дроссель. Корпус ванны соединен с клеммой источника питания, а вторая клемма - с анодом первого неуправляемого вентиля, с первой обкладкой конденсатора и с первым выводом ключа. Второй вывод ключа соединен со второй обкладкой конденсатора, с анодом второго неуправляемого вентиля и с катодом второго управляемого вентиля. Катод второго неуправляемого вентиля соединен с катодом второго неуправляемого вентиля и с анодом первого управляемого вентиля. Один вывод датчика тока соединен с катодом первого и второго управляемых вентилей, а другой - с первым выводом дросселя. Второй вывод дросселя соединен с обрабатываемой деталью. Входы системы управления соединены с выходами датчиков тока и напряжения, а ее выходы - с управляющими электродами управляемых вентилей и с управляющим элементом ключа. Технический результат - повышение прочности оксидного покрытия за счет обеспечения возможности увеличения его толщины. 2 ил.

2515732
выдан:
опубликован: 20.05.2014
ЭЛЕКТРОХИМИЧЕСКОЕ ОСАЖДЕНИЕ ФУЛЛЕРЕНОВОЙ ПЛЕНКИ НА ТОКОПРОВОДЯЩИХ МАТЕРИАЛАХ

Изобретение относится к электрохимии наноуглеродных кластеров, в частности к получению в электрохимическом процессе фуллереновой пленки, осажденной на токопроводящих материалах (металлах, графите). Фуллереновая пленка может быть использована в эндопротезировании, в радиоэлектронике и физике полупроводников. Осаждение пленки проводят на аноде из безводного раствора фуллерена в пиридин-ацетоновой смеси при соотношении пиридина к ацетону 1:4, температуре 20-30°C, разности потенциалов электродов 6,0-8,0 V, плотности тока 1,0-2,0 мА/ кв.дм и длительности процесса 30-60 мин. Получаемая пленка устойчива к действию разбавленных растворов кислот и щелочей. 8 з.п. ф-лы, 5 ил., 2 пр.

2510675
выдан:
опубликован: 10.04.2014
СПОСОБ ФОРМИРОВАНИЯ ПОРИСТОГО ОКСИДА НА СПЛАВЕ ТИТАН-АЛЮМИНИЙ

Изобретение относится к области гальванотехники и может быть использовано для увеличения удельной поверхности деталей из сплавов устройств различной функциональности, в частности, при создании каталитически активных устройств. Способ изготовления детали из сплава титан-алюминий с нанопористой поверхностью включает изготовление детали с пористой поверхностью из спеченного порошка сплава титан-алюминий с размерами гранул 1-10 мкм, промывку детали в этаноле, сушку, промывку в дистиллированной воде, сушку при температуре 80-90°С и формирование нанопористого оксида на поверхности детали анодированием в 10,0% растворе серной кислоты с добавкой 0,15% фтористоводородной кислоты при постоянной плотности тока. Технический результат: увеличение удельной поверхности деталей. 1 пр., 1 ил.

2509181
выдан:
опубликован: 10.03.2014
КАЛЬЦИЙ-ФОСФАТНОЕ БИОЛОГИЧЕСКИ АКТИВНОЕ ПОКРЫТИЕ НА ИМПЛАНТАТЕ

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из конструкционных материалов. Покрытие на имплантате из корундовой или циркониевой керамики содержит промежуточный слой титана толщиной 5-50 мкм на имплантате, нанесенный в плазме непрерывного вакуумного дугового разряда, и слой кальций-фосфатного соединения, нанесенный электрохимическим методом анодирования титана в режиме искрового или дугового разрядов. Технический результат - расширение номенклатуры материалов для основы имплантатов, на которые можно наносить кальций-фосфатные биоактивные покрытия электрохимическим методом в условиях искрового или дугового разрядов. 3 пр.

2507316
выдан:
опубликован: 20.02.2014
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТАХ

Изобретение относится к электролитическим методам обработки поверхности металлических материалов и может быть использован в стоматологическом протезировании. Способ заключается в получении биосовместимого покрытия на стоматологических имплантатах, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиаиатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, при этом оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне; в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемых деталей, изделия другой партии - к клеммам вспомогательного электрода; а электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества в граммах на литр состава: гидроксид калия КОН - 2, гидроксида натрия NaOH - 1, гидрофосфата натрия Na 2HРО4×12H2О - 5, жидкое стекло nNa2O·mSiO2 (М=3,2) - 5, метасиликат натрия Na2SiO3×9H2O - 8, нанодисперсный гидроксиапатит - 0,5÷5, причем отклонения от указанных концентраций компонентов электролита не превышают ±10%. 1 табл., 4 ил., 1 пр.

2507315
выдан:
опубликован: 20.02.2014
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНЫХ КАТАЛИТИЧЕСКИ АКТИВНЫХ СЛОЕВ НА ПОВЕРХНОСТИ, ВЫПОЛНЕННОЙ ИЗ ВЕНТИЛЬНОГО МЕТАЛЛА ИЛИ ЕГО СПЛАВА

Изобретение относится к области катализа. Описан способ получения оксидных каталитически активных слоев на поверхности, выполненной из вентильного металла или его сплава, включающий микродуговое оксидирование в водных растворах электролита, содержащих гидроксид и метасиликат щелочного металла, соли переходных металлов Mn, Cr или их смеси, отличающийся тем, что микродуговое оксидирование проводят в импульсном анодно-катодном режиме с длительностью пачек анодных импульсов 50 мс, катодных 40 мс, паузами между ними 10 мс, соотношением средних анодных и катодных токов 1,1:0,9 из водных растворов электролита, состоящего из трех растворов, которые дополнительно содержат тетраборат натрия, вальфромат натрия, молибдат натрия и метованадат натрия при последовательном оксидировании в каждом из них 10 мин. Технический результат - увеличение в комплексе с каталитическими свойствами коррозионно- и износостойкости, термостойкости оксидных слоев. 8 пр.

2500474
выдан:
опубликован: 10.12.2013
УСТРОЙСТВО ДЛЯ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ

Устройство относится к области гальванотехники и может быть использовано в машиностроении для электролитической обработки поверхности металлических деталей путем их оксидирования. Устройство содержит ванну, барботер, установленный в ванне, токоподводы, источник электрического тока и системы управления процессом микродугового оксидирования, охлаждения электролита и вытяжной вентиляции, при этом оно снабжено малыми ваннами, заполненными электролитом, токоподводы выполнены в виде трех штанг из электропроводного материала, установленных горизонтально и расположенных равномерно над ванной, изолированно от нее и параллельно друг другу, а две крайние штанги электрически соединены друг с другом и подключены к одному из полюсов источника тока, ко второму полюсу которого подключена средняя штанга, причем малые ванны навешены на крайние штанги с помощью подвесок из электропроводного материала для обрабатываемых изделий с возможностью погружения каждой из малых ванн с электролитом в ванну устройства, заполненную охлаждающей жидкостью, на требуемую глубину, а на средней штанге размещены подвески для обрабатываемых изделий с возможностью их погружения в малые ванны с электролитом на требуемую глубину. Технический результат: повышение производительности обработки деталей путем обеспечения возможности их групповой обработки. 4 ил.

2499852
выдан:
опубликован: 27.11.2013
ШТАМП, СПОСОБ ПРОИЗВОДСТВА ШТАМПА И ПРОСВЕТЛЯЮЩЕЕ ПОКРЫТИЕ

Изобретение относится к области гальванотехники и может быть использовано в способах штамповки, отливки и для печати. Пресс-форма содержит на поверхности анодированный пористый слой оксида алюминия, который имеет множество первых утопленных частей и множество вторых утопленных частей, при этом множество вторых утопленных частей имеет двумерный размер не менее 190 нм и не более 50 мкм, если смотреть в направлении, перпендикулярном к поверхности пресс-формы, и содержит множество мелких утопленных частей на внутренней поверхности, которое имеет двумерный размер не менее 10 нм и не более 200 нм, а множество первых утопленных частей имеет двумерный размер не менее 10 нм и не более 200 нм и расположено между множеством вторых утопленных частей, при этом среднее значение двумерного размера множества вторых утопленных частей больше среднего значения двумерного размера множества первых утопленных частей. Пресс-форму изготавливают травлением и анодированием алюминиевой пленки или основы, чистота которых составляет не менее 99,5 мас.%. Использование пресс-формы позволяет получить просветляющую пленку, содержащую множество первых поднятых частей и множество вторых поднятых частей на поверхности, причем множество первых поднятых частей имеет основу, двумерный размер которой составляет не менее 100 нм и не более 200 нм, а множество вторых поднятых частей имеет двумерный размер не менее 400 нм и не более 50 мкм, и угол подъема в множестве вторых поднятых частей относительно поверхности не превышает 90°. Пресс-форма обладает улучшенной смачиваемостью для отверждаемой смолы. 3 н. и 6 з.п. ф-лы, 14 ил., 4 табл.

2497980
выдан:
опубликован: 10.11.2013
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНА И ЕГО СПЛАВОВ

Изобретение относится к области гальванотехники и может быть использовано для получения защитно-декоративных покрытий в промышленности, в частности для формирования тонких пленок нитрида титана на поверхностях из титана и его сплавов. Способ включает электролитическое получение тонкого слоя нитрида титана на поверхности титана, при этом формирование покрытия осуществляют методом анодной поляризации при постоянном токе в электролитах на основе полярных органических растворителей с добавлением воды в присутствии 0,1-0,5 мас.% электропроводящих добавок с барботированием азотсодержащим газом, при этом электролиз проводят при комнатной температуре электролита. Технический результат: получение тонких, плотных, равномерных слоев нитрида титана различной толщины, в том числе на деталях различной конфигурации. 8 пр.

2496924
выдан:
опубликован: 27.10.2013
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА

Изобретение относится к области гальванотехники и может быть использовано в области наноэлектроники. Способ включает формирование слоя пористого анодного оксида анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе, при этом после формирования слоя пористого анодного оксида проводят электрохимический процесс его отделения в слабом водном растворе неорганической кислоты катодной поляризацией титанового образца в потенциостатическом режиме, затем анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе формируют вторичный слой пористого анодного оксида титана, при этом анодное окисление титанового образца для формирования слоя и вторичного слоя пористого анодного оксида проводят при термостабилизации зоны протекания электрохимической реакции. Технический результат: повышение воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры. 2 з.п. ф-лы, 2 ил., 1 пр.

2495963
выдан:
опубликован: 20.10.2013
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ

Изобретение относится к области гальванотехники, в частности к электрохимическому оксидированию в растворах электролитов, и может быть использовано в машиностроении, приборостроении и других отраслях промышленности. Способ включает оксидирование изделий из алюминия и его сплавов в кислых растворах в течение 30-50 мин, дальнейшую выдержку в кипящем водном растворе едкого натра 0,2-0,4 г/л в течение 40-50 мин и последующий нагрев, при этом в качестве растворителя в кислых растворах используют деионизированную воду, а последующий нагрев осуществляют в три приема, при этом сначала изделия нагревают до температуры 260-270 °С и выдерживают в течение 3-5 минут, затем нагревают до температуры 460-470 °С и выдерживают в течение 3-5 мин, а далее нагревают до температуры 530-545 °С и выдерживают в течение 8-15 мин. Технический результат - увеличение толщины покрытий не менее чем на 10%, повышение их электрического сопротивления не менее чем на 8%, повышение их коррозионной стойкости в нейтральных и кислых средах не менее чем на 5%, сокращение времени выдержки изделий с покрытиями при нагреве примерно на 50%. 1 табл., 1 пр., 1 ил.

2495161
выдан:
опубликован: 10.10.2013
СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ НА ДЕТАЛЯХ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Изобретение относится к области гальванотехники и может быть использовано для создания износостойких покрытий на трущихся поверхностях подшипников и опор скольжения, направляющих и других деталей машин из алюминиевых сплавов, применяемых в машиностроительной, металлообрабатывающей, станкостроительной и других областях промышленности. Способ включает микродуговое оксидирование МДО при наложении положительных и отрицательных импульсов напряжения с частотой 50 Гц, при этом после МДО на поверхность рабочего упрочненного слоя покрытия наносят слой состава, содержащего 1 мас.ч. нанопорошка оксида меди и по 3 мас.ч. жидкого стекла и дистиллированной воды, высушивают деталь при температуре 20°С в течение 50-60 мин, после чего деталь повторно обрабатывают в режиме дугового электрофореза в силикатно-щелочном электролите, содержащем 1 г/л гидроксида калия и 2 г/л натриевого жидкого стекла при плотности тока 25-26 А/дм2 в течение 1-2 мин. Технический результат - снижение коэффициента трения покрытия, снижение приработочного износа подвижного соединения, а также повышение его нагрузочной способности и износостойкости. 1 табл.

2487200
выдан:
опубликован: 10.07.2013
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ СУПЕРГИДРОФОБНЫХ ПОКРЫТИЙ НА СТАЛИ

Изобретение относится к области получения на стали защитных супергидрофобных покрытий, обладающих водонепроницаемостью и обеспечивающих эффективное снижение скорости коррозионных процессов при эксплуатации стальных конструкций и сооружений в различных эксплуатационных условиях, в том числе в водных коррозионно-активных средах. Способ включает обработку поверхности стали методом ПЭО в биполярном режиме в электролите, содержащем, г/л: жидкое стекло 2Na2O·SiO2 20-30 и натрий углекислый Na2CO3 15-20, при анодном напряжении, возрастающем от 20 до 300-330 В, и постоянном катодном напряжении -25-30 В в течение 10-20 мин. На сформированное ПЭО покрытие путем окунания с последующей сушкой при 80°С наносят пленку коллоидной ортокремниевой кислоты. В качестве гидрофобизирующего состава используют дисперсию, содержащую, мас.%: метокси{3-[(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-пентадекафтороктил)окси)пропил}силан 0,003-0,006 и аэросил 2,5-4,0 в безводном декане, которую осаждают на пленку ортокремниевой кислоты. Технический результат - улучшение гидрофобных свойств и повышение коррозионной стойкости получаемых покрытий. 1 з.п. ф-лы, 5 ил., 3 пр.

2486295
выдан:
опубликован: 27.06.2013
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ

Изобретение относится к области гальванотехники. Способ включает микродуговое оксидирование электроосажденного слоя железоалюминиевого покрытия стальной детали в течение 60-90 минут при плотности электрического тока 20-40 А/дм2 с подачей на поверхность детали под давлением через распылитель, контактирующий с катодом, кислорода при температуре 5-15°С с расходом 0,1-1,0 м3/мин на один квадратный метр в электролите следующего состава, кг/м3: едкое кали 6-8, борная кислота 40-50, причем детали сообщают поступательные и вращательные движения. Технический результат - повышение микротвердости и износостойкости стальных деталей, увеличение толщины оксидируемого слоя до 300-500 мкм, упрощение способа получения износостойких покрытий. 1 пр.

2484185
выдан:
опубликован: 10.06.2013
СПОСОБ ПОЛУЧЕНИЯ ДЕКОРАТИВНЫХ ПОКРЫТИЙ

Изобретение относится к области получения декоративных покрытий на изделиях из стекла, керамики и других материалов с оптически гладкой поверхностью и может быть использовано при нанесении декоративных покрытий на товары народного потребления, отделочно-декоративные и художественные изделия в различных областях народного хозяйства. Способ включает нанесение на поверхность диэлектрической подложки слоя ниобия магнетронным распылением в вакууме с последующим формированием топологического рисунка методом фотолитографии, затем проводят электрохимическое анодирование в 5-%-ном растворе кальцинированной соды при комнатной температуре сначала в режиме постоянного тока, а затем в режиме постоянного напряжения с получением покрытия фиолетового цвета при напряжении на электродах 20 В, синего цвета - при 30 В, золотистого цвета - при 65 В, вишневого цвета - при 75 В, изумрудного цвета - при 90 В, зеленого цвета - при 105 В. Способ позволяет получать красивый внешний вид изделий с устойчивой яркой окраской, не изменяющейся в течение нескольких лет. 1 табл.

2484181
выдан:
опубликован: 10.06.2013
СПОСОБ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ ПРИСАДОЧНЫХ ПРУТКОВ ИЗ ТИТАНОВОГО СПЛАВА ДЛЯ АНТИФРИКЦИОННОЙ НАПЛАВКИ

Изобретение относится к сварочным материалам для антифрикционных наплавок при изготовлении изделий из титановых сплавов. Способ включает использование присадочных прутков из сварочной титановой проволоки марки ВТ6св, микродуговое оксидирование прутков в водном электролите вначале с раствором NaAlO2 с концентрацией 14÷16 г/л, рН 11,5÷12 при напряжении 280÷300 В и температуре 20÷24°С в течение (15±1) минут, а затем - в водном электролите с раствором Na3 PO4 с концентрацией 13÷15 г/л, рН 10,5÷11 при напряжении 290÷310 В и температуре 16÷20°С в течение (18±1) минут. Техническим результатом изобретения является повышение твердости наплавленного металла до 450÷480 кгс/мм2. 1 пр., 1 табл.

2483146
выдан:
опубликован: 27.05.2013
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА МЕТАЛЛИЧЕСКОМ ИЗДЕЛИИ

Изобретение относится к электрохимической технологии формирования износостойких, диэлектрических, антикоррозионных и декоративных оксидных или оксидно-керамических покрытий на электропроводящие изделия, в частности для нанесения неорганических покрытий на детали и изделия из алюминиевых, магниевых и титановых сплавов, используемых в авиационной, машиностроительной, химической и строительной промышленности. Способ заключается в проведении микродугового оксидирования и/или анодирования на различных участках металлического изделия и включает обработку изделия, части которого размещены в двух резервуарах, герметично разделенных друг от друга при пропускании переменного тока между двумя противоэлектродами, находящимися в упомянутых резервуарах, заполненных электролитом, причем площадь поверхности каждого противоэлектрода превышает площадь поверхности соответствующей части изделия более чем в пять раз. Технический результат заключается в получении покрытий с заданными различными свойствами и толщиной на различных участках поверхности одного изделия без оставшихся не покрытых ее участков поверхности и при сокращении энергозатрат более чем в два раза. 4 з.п. ф-лы, 2 ил., 3 пр.

2483145
выдан:
опубликован: 27.05.2013
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНЫХ ПОЛИМЕР-ОКСИДНЫХ ПОКРЫТИЙ НА ВЕНТИЛЬНЫХ МЕТАЛЛАХ И ИХ СПЛАВАХ

Изобретение относится к области электрохимической обработки поверхности изделий из вентильных металлов и их сплавов и может быть использовано в машиностроении и других отраслях промышленности для получения гидрофобных покрытий, обладающих высокой износостойкостью, а также антифрикционными свойствами и коррозионной стойкостью. Способ включает плазменно-электролитическое оксидирование в водном электролите, содержащем диспергированные частицы порошка политетрафторэтилена (ПТФЭ), при этом оксидирование проводят в гальваностатическом режиме при плотности анодного тока 0,03-0,05 А/см2 в течение 20-30 мин в щелочном электролите, который содержит 40-60 г/л порошка ПТФЭ и дополнительно включает силоксан-акрилатную эмульсию в количестве 40-100 мл/л. Технический результат - улучшение стабильности электролита при одновременном повышении износостойкости и гидрофобных свойств формируемых с его помощью покрытий. 1 з.п. ф-лы, 8 пр., 5 ил.

2483144
выдан:
опубликован: 27.05.2013
ФОРМА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Группа изобретений относится к области гальванотехники и может быть использована в различных способах обработки, в частности, для штамповки, литья, печати. Форма для формирования структуры глаза мотылька на поверхности содержит основу из стекла или пластмассы, неорганический подслой, буферный слой, содержащий алюминий, алюминиевый слой и пористый слой оксида алюминия, имеющий на поверхности перевернутую структуру глаза мотылька со множеством углублений, размер которых в двух измерениях, видимый в направлении нормали к поверхности, составляет не менее 10 нм и менее 500 нм. Способ содержит стадии: (а) предусматривают основу формы из стекла или пластмассы, неорганический подслой, буферный слой, содержащий алюминий, и алюминиевый слой, (b) частично анодируют алюминиевый слой для формирования пористого слоя оксида алюминия с множеством углублений, (с) подвергают пористый слой оксида алюминия травлению, увеличивая в размере углубления пористого слоя, и (d) анодируют пористый слой оксида алюминия для роста углублений. Технический результат: повышение адгезии между алюминиевым слоем и основой. 2 н. и 6 з.п. ф-лы, 2 табл., 4 пр., 7 ил.

2482221
выдан:
опубликован: 20.05.2013
ПРЕСС-ФОРМА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Группа изобретений относится к пресс-формам, предназначенным для получения антиотражающей структуры на изделии. Пресс-форма содержит гибкую полимерную пленку, расположенный на ней слой отверждаемой смолы и слой пористого оксида алюминия на слое отверждаемой смолы. Слой пористого оксида алюминия имеет обращенную рельефную структуру своей поверхности. Упомянутая структура имеет множество углублений. Размер углублений по двум осям, если смотреть в перпендикулярном направлении к поверхности, составляет не меньше 10 нм и меньше 500 нм. Гибкая пресс-форма может быть установлена на внешней поверхности основы в форме ролика. С помощью пресс-формы в форме ролика формируют антиотражающую структуру на поляризационной пластине. Для этого пластину перемещают относительно пресс-формы. При этом перед формированием структуры обеспечивают расположение поляризационной оси пластины параллельно периметру ролика, имеющему длину, которая равна 2 r, где r - радиус ролика. В результате обеспечивается упрощение изготовления гибкой пресс-формы. 4 н. и 11 з.п. ф-лы, 18 ил., 1 табл.

2481949
выдан:
опубликован: 20.05.2013
СПОСОБ ДЛЯ ИЗГОТОВЛЕНИЯ ФОРМ И ЭЛЕКТРОДНАЯ КОНСТРУКЦИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ В ДАННОМ СПОСОБЕ

Группа изобретений относится к области гальванотехники. Способ изготовления формы «мотыльковый глаз» включает: (a) анодирование поверхности алюминиевой пленки или алюминиевой основы посредством электрода, находящегося в контакте с этой поверхностью, с формированием пористого слоя, имеющего множество маленьких углублений; (b) приведение этого слоя в контакт с травителем с увеличением размеров углублений и (c) анодирование посредством электрода для роста углублений, при этом алюминиевая пленка или алюминиевая основа выполнена из алюминия с чистотой 99,99 мас.% или более, а электрод включает в себя первую часть электрода из алюминия с чистотой 99,50 мас.% или менее, и вторую часть из алюминия с более высокой чистотой, чем алюминий первой части электрода, и которая помещена между упомянутой поверхностью и первой частью электрода, при этом этапы (a) и (c) осуществляют со второй частью электрода, контактирующей с упомянутой поверхностью. Электродная конструкция содержит упомянутый электрод с возвышающейся частью, контактирующей со второй частью электрода, защитный элемент, расположенный окружающим периметр возвышающейся части с возможностью предотвращения попадания раствора между частями электрода, и механизм для прижатия второй части к упомянутой поверхности. Технический результат: обеспечение эффективного анодирования на подложке с большой поверхностью. 2 н. и 4 з.п. ф-лы, 7 ил.

2480540
выдан:
опубликован: 27.04.2013
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНЫХ ПОКРЫТИЙ НА ТИТАНЕ И ЕГО СПЛАВАХ

Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной аппаратуры, экранированных помещений, защищенных от утечки информации, а также для космической и авиационной техники. Способ включает плазменно-электролитическое оксидирование титановой подложки в водном электролите, содержащем, г/л: фосфат натрия 10-15, наночастицы кобальта 1,0-1,5 и додецилсульфат натрия 0,1-0,2, в гальваностатическом режиме при плотности тока 0,05-0,2 А/см2 в течение 10-20 мин с последующей обработкой центрифугированием в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и отжиг при 360-370°С в течение 10-15 мин. Технический результат - повышение коррозионной стойкости и срока службы магнитоактивных покрытий, а также обеспечение их стабильного качества за счет увеличения стабильности и рабочего ресурса электролита. 2 пр., 4 ил.

2478738
выдан:
опубликован: 10.04.2013
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА ТИТАН И ЕГО СПЛАВЫ МЕТОДОМ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ В ВОДНЫХ РАСТВОРАХ ПРИ ПОВЫШЕННЫХ ДАВЛЕНИЯХ

Изобретение относится к области гальванотехники и может быть использовано в авиационной, судостроительной, нефте- и газодобывающей, перерабатывающей промышленности, приборостроении и медицинской технике. Способ включает микродуговое оксидирование (МДО) в электролите в герметичном сосуде путем создания разности потенциалов между обрабатываемой деталью в качестве анода и корпусом герметичного сосуда в качестве катода с инициированием анодных плазменных разрядов, при этом МДО на первом этапе проводят при избыточном давлении в газовой части объема герметичного сосуда более 105 атм. путем введения газов, при этом парциальное давление газов создают с учетом их растворимости в электролите, а на втором этапе в электролит вводят катодный модификатор в виде порошка окиси рутения с размером фракции в наноразмерном диапазоне от 20 до 40 нм, при этом МДО ведут при давлении 1-2 атм. Технический результат: повышение коррозионной стойкости, снижение электросопротивления за счет увеличения пористости покрытия на первом этапе и электроискрового легирования на втором этапе с обеспечением равномерности покрытия. 5 з.п. ф-лы, 1 табл., 1 пр.

2476627
выдан:
опубликован: 27.02.2013
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ИЗОЛЯЦИОННОГО ПОКРЫТИЯ НА ЦИРКОНИИ

Изобретение относится к области электрохимической обработки вентильных металлов и может быть использовано в атомной энергетике для защиты от воздействия агрессивных сред и изоляции оболочек тепловыделяющих элементов из циркония. Способ включает анодное оксидирование образца из циркония в электролите с добавлением фторсодержащего компонента, при этом анодное оксидирование проводят в два этапа, причем на первом этапе проводят анодирование в безводном электролите, содержащем фториды, при плотностях тока 10-20 мА/см 2 и напряжении 95-130 В, затем образец подвергают катодной поляризации в 4% водном растворе борной кислоты с добавлением 25% раствора аммиака, при напряжениях, соответствующих первому этапу анодирования, отмывке в дистиллированной воде и сушке, а на втором этапе проводят анодное окисление циркония в электролите, в котором проводили катодную поляризацию, в режиме постоянного тока плотности 1-5 мА/см2 и напряжении 200-300 В. Технический результат - получение размерных, сплошных, устойчивых анодных покрытий на цирконии. 1 пр.

2472873
выдан:
опубликован: 20.01.2013
Наверх