Способы и устройства для изготовления проводов или кабелей: ..экструзией – H01B 13/24

МПКРаздел HH01H01BH01B 13/00H01B 13/24
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01B Кабели; проводники; изоляторы; выбор материалов для получения требуемых характеристик электрической проводимости, изоляции и диэлектрической постоянной
H01B 13/00 Способы и устройства для изготовления проводов или кабелей
H01B 13/24 ..экструзией 

Патенты в данной категории

СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ МНОГОЖИЛЬНОГО МАТЕРИАЛА

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры многожильного материала, подлежащего нагреванию до расчетной температуры. Согласно заявленному способу многожильный материал приводят в теплопроводящий контакт по меньшей мере с одним диском, оборачивая вокруг указанного диска, установленного с возможностью вращения и нагревания до заданной температуры, и измеряют разность температур многожильного материала или величин, характеризующих температуру многожильного материала, перед заходом многожильного материала на диск и после схода многожильного материала с диска. Изобретение также относится к соответствующему устройству, позволяющему реализовать указанный выше способ. Технический результат - повышение точности измерения температуры. 2 н. и 24 з.п. ф-лы, 4 ил.

2529778
патент выдан:
опубликован: 27.09.2014
ПЕНИСТАЯ КОМПОЗИЦИЯ С НИЗКИМИ ПОТЕРЯМИ И КАБЕЛЬ, ИМЕЮЩИЙ ПЕНИСТЫЙ СЛОЙ С НИЗКИМИ ПОТЕРЯМИ

Изобретение относится к пенистой композиции для использования в кабелях и кабелю, содержащему пенистую композицию для использования в телекоммуникациях. Пенистую композицию плотностью от 85 кг/м 3 до 120 кг/м3 получают путем нагрева олефинового полимера преимущественно с инициатором пенообразования до расплавленного состояния. Расплавленную смесь экструдируют под давлением через фильеру с применением вспенивателя, содержащего атмосферный газ, например двуокись углерода, азот или воздух, и совспенивателя с точкой кипения между -65°С и +50°С, выбранный из гидрофторуглеродов, гидрохлорфторуглеродов или перфторсоединений. В качестве олефинового полимера используют полиэтилен высокой плотности, полиэтилен средней плотности, полиэтилен низкой плотности, линейный полиэтилен низкой плотности, полипропилен или их сочетания. Кабель изготавливают путем экструдирования пенистой композиции на сигнал-несущий проводник и покрытия сигнал-несущего проводника, заключенного в пенистый материал, подходящим проводящим экраном. Изобретение дает возможность изготовления телекоммуникационного кабеля с низкими потерями сигнала, при этом применяемая смесь вспенивателей является экологически приемлемой, неогнеопасной и нетоксичной и позволяет значительно снизить плотность пены при сохранении доли открытых пор на приемлемом уровне. 4 н. и 11 з.п. ф-лы, 9 табл.

2334768
патент выдан:
опубликован: 27.09.2008
ОГНЕСТОЙКИЙ САМОГАСЯЩИЙСЯ ЭЛЕКТРИЧЕСКИЙ КАБЕЛЬ ИЛИ ПРОВОД

Изобретение относится к электротехнической промышленности и может быть использовано в различных отраслях промышленности, где необходимо применение электрических кабеля или проводов, т.е. в автостроении, судостроении, машиностроении, строительстве, при нефтедобыче и нефтепереработке. Электрический провод или кабель содержит многожильный токопроводящий медный провод с сечением жилы 1,0÷50 мм2 и резиновую оболочку толщиной 0,4÷7,0 мм, выполненную из композиционного материала на основе резиновой смеси, содержащей в качестве полимерной матрицы смесь высокомолекулярного полиметилвинилсилоксанового и низкомолекулярного полиметилвинилсилоксанового каучука с мол. массой 20÷70 тыс., в сочетании с возможно стеариновой кислотой, огнезащитным наполнителем, дегидратирующим агентом, аэросилом, кварцем, антиструктурирующим агентом- , -дигидроксидиметилсилоксаном, органической перекисью, гидрофобизатором - кремнийорганической жидкостью. Композиционный материал наносят экструзией со скоростью 0,2÷2 м/сек и подвергают вулканизации по режиму радиационно-химической вулканизации под действием либо пара при давлении 12÷18 атмосфер, либо кобальтовой пушки с источником -излучения с дозой 2,5÷20 Мрад и/или термической вулканизации. Технический результат заключается в том, что полученный электрический провод является самозатухающим при воздействии огня, эксплуатируется при от -60°С до +300°С, трещиностоек, обладает повышенной маслобензостойкостью, эластичностью и имеет хорошие электрофизические характеристики. 2 з.п. ф-лы, 1 табл.

2285306
патент выдан:
опубликован: 10.10.2006
САМОПОДДЕРЖИВАЮЩИЙСЯ КАБЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к самоподдерживающимся кабелям, которые включают по крайней мере один изолированный проводник, который включает токоведущую жилу, которая имеет по крайней мере одну проволоку и изоляцию вокруг токоведущей жилы кабеля. Кабель также включает по крайней мере один вытянутый в продольном направлении экранирующий слой и оболочку. Согласно изобретению экранирующий слой является твердым в радиальном направлении и включает волнообразные неровности, которые располагают главным образом в тангенциальном направлении. Оболочка включает волнообразные неровности, которые соответствуют волнообразным неровностям экранирующего слоя. Когда в точках крепления кабеля прикладывают слабое сжимающее усилие, которое действует в радиальном направлении, волнообразные неровности оболочки и волнообразные неровности экранирующего слоя входят друг в друга так, чтобы позволить передавать силу тяжести, которая действует на кабель между точками крепления кабеля, в токоведущие жилы, как силу, которая действует в осевом направлении в отсутствие скольжения между различными слоями кабеля. Кабель становится самоподдерживающимся благодаря механической прочности токоведущих жил. Изобретение позволяет упростить и удешевить производство и смонтирование кабеля. 2 с. и 10 з.п.ф-лы, 3 ил.
2183874
патент выдан:
опубликован: 20.06.2002
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОДА

Изобретение относится к электротехнике и касается изготовления изолированных проводов. Способ включает нанесение методом экструзии изоляции из полиэтилена на токопроводящую жилу с последующим охлаждением в воде под давлением 0,3 - 1,2 МПа, имеющей температуру на 5 - 15oC меньше нижней границы фазового перехода полиэтилена из вязкотекучего в аморфно-кристаллическое состояние, до достижения температуры токопроводящей жилы, соответствующей нижней границе указанного фазового перехода, а затем - в воде при комнатной температуре. Техническим результатом изобретения является получение провода с монолитной изоляцией и высокими эксплуатационными характеристиками. 1 табл.
2161833
патент выдан:
опубликован: 10.01.2001
КОНТАКТНЫЙ ЭЛЕКТРОПРОВОДНИК И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Контактный электропроводник предназначен для комплектации сигнальных систем от пожаров, утечек жидкостей, в частности нефти, охраны территорий. Выполнен в виде кабеля, состоящего из двух токопроводящих спиральных проволок, разделенных изоляцией с обеспечением винтообразных зазоров. Для компактности кабеля проволоки могут иметь овальное сечение. Кабель изготавливается одномоментно методом гидропульсационной экструзии как проводников, так и изоляционных элементов в виде упругой трубки и шнуров. Экструзия осуществляется с применением высокочастного рекуперативного гидропульсатора и мультипликатора высокого давления, плунжер которого уплотнен жесткой приторцованной накладкой. Изобретение обеспечивает универсальность использования и упрощает конструкции. 2 с. и 2 з.п. ф-лы, 7 ил.
2130659
патент выдан:
опубликован: 20.05.1999
СПОСОБ ПОЛУЧЕНИЯ ДЛИННОМЕРНЫХ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ

Предлагаемое изобретение относится к области электротехники и технической сверхпроводимости и может быть использовано для получения длинномерных композиционных многожильных проводников на основе высокотемпературных сверхпроводящих соединений и создания из них электротехнических изделий. Отличительными признаками предлагаемого технического решения является то, что путем деформации сложной заготовки, состоящей из оболочки и требуемого числа мерных частей разрезанной деформированной заготовки, получают длинномерный проводник, проводят высокотемпературную термообработку при температуре 830-835oС для формирования в жилах сверхпроводящей фазы необходимого состава и определенной структуры, после чего получают на оболочке проводника негомогенное электроизоляционное покрытие с повышенной проницаемостью кислородом путем нанесения на поверхность оболочки раствора металлоорганического соединения концентрации по металлу, смеси металлов 25-40 г/л с последующей низкотемпературной термообработкой при температуре 350- 400oС, затем производят намотку изделия и проводят дополнительную высокотемпературную термообработку при 835-840oС. Полученные предложенным способом изделия корректируемой конструкции имеют критические свойства изделий, изготовленных способом, не предусматривающим корректировку конструкции. 1 ил. 1 табл.
2124775
патент выдан:
опубликован: 10.01.1999
СПОСОБ ПОЛУЧЕНИЯ ДЛИННОМЕРНЫХ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ

Изобретение относится к электротехнике и технической сверхпроводимости и может быть использовано для получения длинномерных композиционных многожильных проводников на основе высокотемпературных сверхпроводящих соединений и создания из них электротехнических изделий. Отличительными признаками предлагаемого изобретения является то, что путем деформации сложной заготовки, состоящей из оболочки и требуемого числа мерных частей разрезанной деформированной заготовки, получают длинномерный проводник, проводят высокотемпературную термообработку при температуре 830-835oС для формирования в жилах сверхпроводящей фазы необходимого состава и определенной структуры, после чего получают на оболочке проводника негомогенное электроизоляционное покрытие путем нанесения на поверхность оболочки раствора металлоорганического соединения концентрации по металлу, смеси металлов 25-40 г/л с последующей низкотемпературной термообработкой при температуре 350-400oС, а затем производят намотку изделия. Полученный длинномерный проводник в изоляционном покрытии имеет максимально возможную устойчивость к деформациям на изгиб за счет получения определенной структуры керамической сердцевины и негомогенного изоляционного покрытия. Получение такого проводника делает возможным корректировку конструкции изделий на его основе в широком диапазоне, что значительно расширяет сферы их применения. 1 ил, 1 табл.
2124774
патент выдан:
опубликован: 10.01.1999
СПОСОБ ПОЛУЧЕНИЯ ДЛИННОМЕРНЫХ ВЫСОКОТЕМПЕРАТУРНЫХ ПРОВОДНИКОВ

Предлагаемое изобретение относится к области электротехники, а именно к технической сверхпроводимости и может быть использовано для получения длинномерных композиционных многожильных проводников на основе высокотемпературных сверхпроводящих соединений. Отличительными признаками предлагаемого технического решения является то, что путем деформации (степень деформации за проход 1-7%) сложной заготовки, состоящей из оболочки и требуемого числа мерных частей разрезанной деформированой заготовки, получают длинномерный проводник, проводят высокотемпературную термообработку для формирования в жилах сверхпроводящей фазы необходимого состава и структуры после чего получают на оболочке проводника электроизоляционное покрытие путем нанесения на поверхность оболочки раствора металлоорганического соединения с последующей низкотемпературной термообработкой. Полученный длинномерный проводник в изоляционном покрытии имеет повышенную устойчивость к деформациям на изгиб за счет увеличения количества керамических жил в сердцевине. При этом аморфная структура изоляционного покрытия в сочетании с многожильной сердцевиной проводника позволяет проводить корректировку конструкции изделий созданных на его основе. 2 ил., 1 табл.
2124773
патент выдан:
опубликован: 10.01.1999
СПОСОБ ПОЛУЧЕНИЯ ДЛИННОМЕРНЫХ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ ИЗДЕЛИЙ

Предлагаемое изобретение относится к области электротехники и технической сверхпроводимости и может быть использовано для получения длинномерных композиционных многожильных проводников на основе высокотемпературных сверхпроводящих соединений и создания из них электротехнических изделий. Отличительными признаками предлагаемого технического решения является то, что путем деформации сложной заготовки, состоящей из оболочки и требуемого числа мерных частей разрезанной деформированной заготовки, получают длинномерный проводник, на оболочку проводника наносят электроизоляционное покрытие с повышенной проницаемостью кислородом путем нанесения на поверхность оболочки раствора металлоорганического соединения концентрации по металлу, смеси металлов 25-40 г/л с последующей низкотемпературной термообработкой при 350-400oС, затем производят намотку изделия и высокотемпературную термообработку. Полученный многожильный проводник имеет изоляционное покрытие с повышенной проницаемостью для кислорода. Получение такого проводника позволяет изготавливать из него изделия с высокими критическими свойствами, не зависящими от наличия покрытия, что значительно расширяет сферы применения изделий. 1 ил. 1 табл.
2124772
патент выдан:
опубликован: 10.01.1999
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ ПРОВОДНИКОВ

Изобретение относится к области электротехники и технической сверхпроводимости, в частности к технологии получения длинномерных металлокерамических композиционных одножильных и многожильных проводников на основе высокотемпературных сверхпроводящих соединений, предназначенных для создания электротехнических изделий. Сущность изобретения состоит в следующем. Способ включает деформацию металлокерамической композиционной заготовки и высокотемпературную термообработку в несколько стадий с промежуточными деформациями между стадиями высокотемпературной термообработки, которые на длинномерных проводниках проводят прокаткой в валках, выполненных из упругого материала, например полиуретана, при этом валки устанавливают так, чтобы отношение площади части контактной зоны оболочки проводника и поверхности валков, параллельной плоскости прокатки, к площади поперечного сечения проводников различной формы составляло 25 - 85, в частности для плоских проводников - 45 - 50, для круглых - 30 - 80. Необходимое увеличение площади контактной зоны оболочки проводника и поверхности валков происходит за счет увеличения протяженности части этой зоны, параллельной плоскости прокатки, до 2 - 22 мм. Предлагаемый способ позволяет получать одножильные и многожильные проводники различной формы с уменьшенными потерями при переходе от схемы промежуточного прессования к схеме промежуточной прокатки на 20%. В данном способе обеспечена также возможность сохранения при промежуточных прокатках формы поперечного сечения проводника, снижено значение полуширины текстурного максимума ниже 6o. 4 з.п. ф-лы, 4 ил., 1 табл.
2122759
патент выдан:
опубликован: 27.11.1998
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБКОГО ЭЛЕКТРИЧЕСКОГО КАБЕЛЯ

Использование: в электротехнической промышленности для присоединения передвижных машин и механизмов к сети. Сущность изобретения: на токопроводящие жилы накладывают изоляцию из резины с электропроводящим экраном, на скрученную жилу - двухслойную оболочку. При этом для наружного слоя используют композицию, содержащую хлоропреновый каучук, белила цинковые, каптакс, дифенилгуанидин, магнезию жженую, стеарин, парафин и технический углерод, а для внутреннего - композицию, содержащую, мас.ч.: бутадиен-метилстирольный каучук 100, 2-меркантобензтиазол 0,6, 1,2, сера 0,1 - 0,8, тетраметилтиурамдисульфид 0,3 - 0,6, белила цинковые 3 - 6, стеарин 6 - 8, фенил-2-нафтиламин 0,8 - 1,2, парафин 10,4 - 20,8, битум нефтяной 5 - 10 канифоль 1 - 2, мел 50 - 100, тальк 50 - 96, натрий тетраборнокислый-10 - 15, техуглерод 30 - 60, дибутилфталат - 0,230. 2 табл.
2028681
патент выдан:
опубликован: 09.02.1995
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБКОГО ЭЛЕКТРИЧЕСКОГО КАБЕЛЯ

Использование: при изготовлении кабеля с резиновой защитной оболочкой, состоящей из двух слоев. Сущность изобретения: поверх скрученных изолированных жил накладывают композицию для образования внутреннего слоя оболочки, содержащую, мас. ч: этиленпропилендиеновый каучук 100,0; бис-третбутилпероксидизопропилбензол 6,5-7,5; сера 0,04-0,6; диоксим 1,1 - диацетилферроцена 1,3-1,8; цинковая белила 4-6; диспергатор 2,4-3,6; пластификатор 25-35; технический углерод 45-65; мел природный 345-365, при этом толщину внутреннего слоя оболочки обеспечивают равной 30-50% и вулканизацию производят при избыточном давлении 1,57-1,76 МПа и температуре 193-196°С. 2 табл.
2024974
патент выдан:
опубликован: 15.12.1994
Наверх