Прочие способы получения или использования тепла, образующегося иначе, чем в процессе горения – F24J 3/00
F24J 3/06 | .использование природного тепла |
F24J 3/08 | ..геотермального тепла устройства для использования геотермальной энергии с целью получения механической энергии F 03G 4/00 |
Патенты в данной категории
ПЕТРОТЕРМАЛЬНАЯ ЭЛЕКТРОСТАНЦИЯ И УСТРОЙСТВО МОНТАЖА ТЕПЛООТБОРНОЙ СИСТЕМЫ ПЕТРОТЕРМАЛЬНОЙ ЭЛЕКТРОСТАНЦИИ
Изобретение относится к области энергетики, в частности к электростанциям, работающим на базе глубинного тепла Земли. Петротермальная электростанция содержит скважину, пробуренную до глубины с температурой забоя не менее 600°С, теплоотборную систему, расположенную в скважине, содержащую паровой котел, два присоединенных к нему трубопровода, каждый из которых состоит из отдельных частей, причем части трубопровода для нагнетания воды соединены с частями паропровода для отвода пара жесткими перемычками с образованием секций, при этом часть скважины в зоне расположения парового котла с захватом зоны его разогрева, заполнена водонепроницаемым материалом, остальная часть скважины заполнена породой, поднятой на поверхность при бурении скважины с соблюдением порядка ее расположения в земной коре в месте бурения. Устройство монтажа теплоотборной системы петротермальной электростанции включает монтажную вышку с гидроподъемником, монтажный стол, выполненный в виде сварочного стола, раздвижным, с выемками, образующими в центре стола при соединении этих частей проем с возможностью продвижения через него в скважину секций теплоотборного устройства. Обеспечивает надежную работу петротермальной электростанции, повышение мощности. 2 н. и 3 з.п. ф-лы, 4 ил. |
2529769 выдан: опубликован: 27.09.2014 |
|
СПОСОБ КОМПЛЕКСНОГО ИСПОЛЬЗОВАНИЯ ГЕОТЕРМАЛЬНОГО ТЕПЛА С ПОМОЩЬЮ ПАРОЭЖЕКТОРНОГО ТЕПЛОВОГО НАСОСА
Изобретение относится к энергетике и может быть использовано в системах тепло-холодоснабжения при использовании геотермального тепла с помощью пароэжекторного теплового насоса. Сущность: охлажденный теплоноситель подается в скважину, а нагретый передает тепло потребителю при помощи пароэжекторного теплового насоса, причем тепло скважины в теплый период используют для выработки холода для нужд холодоснабжения. При снижении или отсутствии нагрузок тепло-холодоснабжения осуществляют выработку электрической энергии при помощи турбогенератора, работающего на паре хладагента - низкокипящего теплоносителя, который получают в генераторе пароэжекторного теплового насоса, при этом пары хладагента направляются на паровую турбину для выработки электрической энергии, а отработанный пар отсасывается в конденсатор пароэжекторного теплового насоса пароструйным эжектором. Такой способ позволит снизить себестоимость тепло-холодоснабжения за счет гибкого режима комплексной выработки тепловой энергии, холода и электрической энергии. 1 ил. |
2528213 выдан: опубликован: 10.09.2014 |
|
МНОГОФУНКЦИОНАЛЬНЫЙ ВИХРЕВОЙ ТЕПЛОГЕНЕРАТОР (ВАРИАНТЫ)
Изобретение относится к области теплоэнергетики и может быть использовано в системах отопления, подогрева воды для бытовых и производственных нужд. Решением технической задачи является повышение скорости нагрева жидкости. Сущность изобретения: многофункциональный вихревой теплогенератор по первому варианту содержит закрытый корпус с патрубками для подвода нагреваемой жидкости и отвода нагретой жидкости, установленные внутри корпуса роторы, выполненные в виде двух дисков, закрепленных на независимых валах, имеющих независимые приводы и имеющие возможность вращаться навстречу друг другу, всасывающие турбины, которые жестко закреплены на независимых валах вместе с дисками роторов, а в дисках роторов напротив установленных турбин по окружности выполнены конически-цилиндрические отверстия, направленные в полость между дисками, выше по радиусу которых радиально по окружности жестко установлены ряды пальцев, при этом пальцы выполнены так, что ряды пальцев одного диска свободно с зазором входят между рядами пальцев второго диска, а конически-цилиндрические отверстия одного диска расположены напротив конически-цилиндрических отверстий другого диска и каждый диск с каждой турбиной снабжен отдельным патрубком, являющимися патрубками для подвода нагреваемой жидкости. По второму варианту в теплогенераторе каждый электродвигатель дополнительно содержит устройство для регулирования частоты вращения, а ряды пальцев роторов выполнены в виде эллипсоидных пальцев-лопаток, перфорированных сквозными конически-цилиндрическими отверстиями и установлены на дисках так, что отверстия в пальцах-лопатках направлены по ходу вращения дисков роторов. По третьему варианту в вихревом теплогенераторе выходы электродвигателей приводов роторов, датчика температуры сборника нагретой жидкости соединены с соответствующими входами блока управления, а вся внутренняя поверхность корпуса и наружная поверхность турбин, дисков с пальцами и валов привода, размещенных внутри корпуса, покрыты износоустойчивой керамикой. 3 н.п. ф-лы, 9 ил. |
2527545 выдан: опубликован: 10.09.2014 |
|
АЭРОСТАТИЧЕСКИЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ
Изобретение относится к управляемым аэростатическим летательным аппаратам. Аэростатический летательный аппарат содержит подъемный баллонет, несущий баллонет и энергетическую установку, включающую нагреватель. Подъемный баллонет заполнен рабочим телом энергетической установки, расположенной в энергогондоле и включающей компрессор, нагреватель, турбину, силовую нагрузку и магистрали рабочего тела, соединенные с подъемным баллонетом. Несущий баллонет секционирован и снабжен средством изменения его объема. Изобретение направлено на повышение энерговооруженности. 8 з.п. ф-лы, 1 ил., 1 табл. |
2526123 выдан: опубликован: 20.08.2014 |
|
ТЕПЛОГЕНЕРАТОР ФРИКЦИОННЫЙ
Изобретение относится к ветроэнергетике и может быть использовано в системах отопления и горячего водоснабжения жилых и производственных зданий. Теплогенератор фрикционный включает вертикальный цилиндрический корпус с крышкой и днищем, приводной вал, патрубки входа холодной и выхода горячей воды, внизу подвижный диск с лопастями и неподвижный диск. Труба, жестко надетая на вал, имеет сверху прикрепленные к ней с обеих сторон коромысла, а снизу консольные балки, опертые на диск. Внизу по обе стороны консольных балок прикреплены диски, из центра которых выходят прикрепленные к ним вертикальные стержни со свободно надетыми на них дисками с лопатками и дисками с пустотелыми кольцами вокруг них. Стержни вверху зафиксированы во втулках, прикрепленных к коромыслам. Такое выполнение позволяет увеличить коэффициент преобразования одного вида энергии в другой по сравнению с аналогичными теплогенераторами. 1 з.п. - ф-лы, 3 ил. |
2522738 выдан: опубликован: 20.07.2014 |
|
ВЕТРОВОЙ ТЕПЛОГЕНЕРАТОР
Изобретение предназначено для применения в области отопительной техники, а именно для нагрева воды, использующейся в отоплении и горячем водоснабжении. Ветровой теплогенератор содержит цилиндрический корпус с крышкой и днищем и цилиндрическую горизонтальную перегородку, в которых установлены опорный подшипник и опорно-упорный подшипник, с закрепленным в них вертикальным валом, имеющий сверху муфту для приема мощности от ветродвигателя, а снизу к нему прикреплен вращающийся лопаточный элемент. Справа в нижней части корпуса установлен патрубок входа холодной воды, а в верхней части - патрубок выхода горячей воды, связанные соответственно, с системами холодного и горячего водоснабжения. Предлагаемый теплогенератор может быть использован в двух вариантах для обогрева помещений. При закрытых вентилях на патрубках, соединенных с отопительными приборами соседнего помещения - обогрев двух и более помещений. 3 ил. |
2522736 выдан: опубликован: 20.07.2014 |
|
ВЕТРОВОЙ ФРИКЦИОННЫЙ ТЕПЛОГЕНЕРАТОР
Изобретение относится к ветроэнергетике и может быть использовано в системах отопления и горячего водоснабжения жилых и производственных зданий. Ветровой фрикционный теплогенератор включает цилиндрический корпус с крышкой и днищем, приводной вал и патрубки входа холодной воды и выхода горячей воды справа вверху корпуса. Приводной вал под крышкой имеет фланец, жестко соединенный внизу с фланцем шнека, а с боков с плитой, имеющей отверстия для присоединения к ней периферийных шнеков. Центральный шнек внизу имеет отверстие, в котором на скользящей шпонке установлена ось, жестко соединенная с подвижным диском, закрепленным на днище. Периферийные шнеки вверху свободно размещены с зазором 1,5-2,0 мм в отверстиях плиты, а внизу имеют прикрепленные к ним диски, контактирующие с кольцевым диском, прикрепленным к днищу. Все шнеки внизу объединены пустотелым кольцом, заполненным теплоаккумулирующим веществом фазового перехода, а их поверхность имеет повышенную шероховатость. Такое выполнение позволит повысить эффективность нагрева жидкости. 3 ил. |
2522734 выдан: опубликован: 20.07.2014 |
|
УСТРОЙСТВО ДЛЯ НАГРЕВА ЖИДКОСТИ
Изобретение относится к энергетике и может быть использовано для нагрева воды в жилищно-коммунальной отрасли и сельском хозяйстве. Сущность изобретения в том, что в устройстве для нагрева жидкости, содержащем рабочий сетевой насос, подающий и обратные трубопроводы с запорными вентилями, обеспечивающими взаимосвязь теплообменника с теплогенератором, содержащим, по крайней мере, один снабженный цилиндрической частью в виде вихревой трубы корпус, в основании которого размещено тормозное устройство, а другая его сторона соединена с торцевой стороной ускорителя движения жидкости, выполненного в виде улитки, соединенной с насосом и оснащенной расположенной соосно осевой линии вихревой трубы ускорительной втулкой, связанной каналом с напорным патрубком насоса, ускорительная втулка теплогенератора выполнена в виде набора концентрично вложенных с радиальными зазорами зафиксированных втулок. Такое выполнение устройства позволит повысить эффективности нагрева жидкости и достичь стабильности работы. 11 з.п. ф-лы, 8 ил. |
2517986 выдан: опубликован: 10.06.2014 |
|
СПОСОБ УПРАВЛЕНИЯ КОМБИНИРОВАННЫМ УСТРОЙСТВОМ И КОМБИНИРОВАННОЕ УСТРОЙСТВО, РЕАЛИЗУЮЩЕЕ ДАННЫЙ СПОСОБ
Изобретение относится к способу управления комбинированным устройством и комбинированному устройству, в котором может быть применен данный способ. Способ управления устройством 1, которое содержит, по меньшей мере, компрессорную установку 2 и/или устройство для сушки с одной стороны и систему 3 регенерации тепла с другой стороны. Система 3 регенерации тепла поглощает тепло из компрессорной установки 2. Комбинированное устройство 1 дополнительно содержит контроллер 5 и средство 6 для установления одного или более параметров системы. Контроллер 5 управляет как компрессорной установкой 2 и/или устройством для сушки, так и системой 3 регенерации тепла, на основе вышеупомянутых параметров системы, с оптимизацией общей эффективности комбинированного устройства. Изобретение направлено на снижение общего энергопотребления комбинированного устройства. 2 н. и 1 з.п. ф-лы., 1 ил. |
2516091 выдан: опубликован: 20.05.2014 |
|
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОВЫШЕНИЯ СТАБИЛЬНОСТИ РАБОТЫ КАВИТАТОРА
(57) Изобретение относится к области электротехники и эксплуатации систем с асинхронным электродвигателем и частотным регулятором, в частности к регулированию скорости вращения и предотвращению критических режимов работы. Техническим результатом способа является повышение надежности кавитатора, обеспечение поддержания его устойчивой работы путем коррекции режима работы в случае обнаружения признака, свидетельствующего о приближении возникновения срыва потока изменением скорости вращения электродвигателя. Способ управления процессом повышения стабильности работы кавитатора включает прохождение жидкости в зазоре между ротором и статором и последующее преобразование полученной энергии в тепловую, регулирование процессом нагрева. Заявляемый способ контроля режимов работы кавитатора основан на анализе соотношения высших гармоник в электрической сети, сравнении его с пороговым значением и формировании сигнала управления для частотного регулятора, который управляет скоростью вращения электродвигателя. Способ управления позволяет достичь максимальной эффективности способа активации технологических жидкостей для последующего использования в различных процессах химических производств: растворения, теплогенерации, синтеза. 5 ил. |
2515573 выдан: опубликован: 10.05.2014 |
|
ТЕРМОЭЛЕКТРИЧЕСКОЕ ЗВЕНО ДЛЯ ТРУБЫ
Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе теплопередачи в трубчатых аппаратах (теплогенераторах, теплообменниках, отопительных приборах). Техническим результатом изобретения является повышение надежности и эффективности термоэлектрического звена для трубы. Это достигается тем, что термоэлектрическое звено содержит трубу теплоносителя, покрытую слоем диэлектрического материала с высокой теплопроводностью, выполненным из отдельных кольцевых зубчатых ребер с зубцами, плотно прижатых друг к другу, внутри каждого из которых помещены кольцевые зигзагообразные ряды термоэлектрических секций, состоящие из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей, каждый из которых состоит из пары отрезков, выполненных из разных металлов M1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены в зонах нагрева и охлаждения, вблизи кромки зубца ребра и наружной поверхности трубы теплоносителя, соответственно, причем свободные концы зигзагообразных кольцевых рядов каждой термоэлектрической секции соединены между собой перемычками, а свободные концы кольцевых рядов крайних термоэлектрических секций, в свою очередь, соединены электропроводами с коллекторами и токовыводами. 5 ил. |
2509266 выдан: опубликован: 10.03.2014 |
|
ВОСПРИНИМАЮЩИЕ ЧАСТИЦЫ ИЗ УГЛЕРОДНЫХ НИТЕЙ ДЛЯ РАДИОЧАСТОТНОГО НАГРЕВА
Изобретение относится к способу радиочастотного нагрева нефтеносной породы с использованием набора из одной или более радиочастот. Способ включает следующие шаги: (a) смешивание первого вещества, включающего нефтеносную породу, и второго вещества, включающего воспринимающие частицы в виде дипольных антенн, с образованием смеси из 10-99% по объему первого вещества и 1-50% по объему второго вещества; (b) воздействие на упомянутую смесь радиочастотной энергией с частотой или частотами из упомянутого набора из одной или более радиочастот и мощностью, достаточной для нагрева воспринимающих частиц; и (c) продолжение воздействия радиочастотной энергией на протяжении времени, достаточного для нагревания воспринимающими частицами упомянутой смеси до средней температуры, превышающей приблизительно 100°C (212°F). При этом способ характеризуется тем, что упомянутые воспринимающие частицы представляют собой проводящие углеродные волокна в форме нитей с длиной, выбранной между 1/2, 1/4, 1/8 и 1/16 длины волны. Упомянутые воспринимающие частицы могут иметь преимущества для радиочастотного нагрева углеводородных соединений, например повышенная температура (достаточная для дистилляции или пиролиза), безводная переработка, а также более высокая скорость или эффективность. 13 з.п. ф-лы, 3 пр., 2 ил. |
2504574 выдан: опубликован: 20.01.2014 |
|
УСТРОЙСТВО ДЛЯ НАГРЕВА ЖИДКОСТИ
Изобретение относится к теплоэнергетике и может использоваться для нагрева жидкостей, а также как смеситель различных жидкостей. Устройство для нагрева жидкости содержит теплогенератор, состоящий из корпуса, имеющего цилиндрическую часть, и ускорителя движения жидкости, выполненного в виде циклона, насос, соединенный с теплогенератором посредством инжекционного патрубка, в котором размещена, по крайней мере, одна вставка, и систему теплообмена. Вставка выполнена в виде сплошной пластины, ориентированной вдоль инжекционного патрубка перпендикулярно торцам циклона. Вставка в инжекционном патрубке принудительно расширяет струю в месте входа её в циклон, что приводит к образованию вакуумметрической области, далее по потоку области сжатия, вакуума, снова сжатия и т.д. По мере продвижения в циклоне каждого элемента струйного потока по этим чередующимся областям в нём образуются и схлопываются кавитационные каверны, обеспечивающие нагрев воды или другой технологической жидкости. Изобретение позволяет повысить эффективность нагрева жидкости и надежность работы устройства. 9 з.п. ф-лы, 5 ил. |
2503896 выдан: опубликован: 10.01.2014 |
|
ЭЛЕКТРОНАСОС ЦЕНТРОБЕЖНЫЙ ГЕРМЕТИЧНЫЙ - ТЕПЛОГЕНЕРАТОР
Изобретение относится к области насосостроения и может найти применение в центробежных герметичных электронасосах, перекачивающих взрывопожароопасные жидкости с повышенной вязкостью. Электронасос-теплогенератор содержит в одном корпусе подвод, рабочее колесо и отвод насоса, а также статор и установленный в опорах скольжения на полом валу полый ротор приводного электродвигателя. Внутри полого ротора выполнена тепловая труба. В установленный на валу гидродинамический роторный кавитатор включен ультразвуковой резонансный усилитель кавитации. В пространстве между статором и ротором на полом валу выполнены коаксиальные тепловые трубы. Изобретение направлено па улучшение всасывающей способности электронасоса, повышение его к.п.д. и снижение потребляемой им мощности за счет повышения температуры перекачиваемой жидкости внутри электронасоса. 1 з.п. ф-лы, 1 ил. |
2495337 выдан: опубликован: 10.10.2013 |
|
ТЕПЛОГЕНЕРАТОР ГИДРАВЛИЧЕСКИЙ
Изобретение относится к отопительной технике и может быть использовано для нагрева воды для отопления и горячего водоснабжения. Теплогенератор гидравлический включает цилиндрический корпус с крышкой и днищем, элемент в виде витой пружины, патрубки входа холодной и выхода горячей воды. К виткам полого элемента, в цилиндрической его части, снаружи, прикреплена в горизонтальном положении витая плоская пружина с отверстиями, а на вертикальной трубе, размещенной внутри элемента, установлены пустотелые шайбы, заполненные теплоаккумулирующим веществом и снабженные отверстиями. Вертикальный вал от ветродвигателя через редуктор и горизонтальный вал, имеющий с торца сплошной диск, механически через палец на диске и кривошип соединены с шатуном и штоком, жестко соединенными с полым элементом и трубой, размещенными внутри корпуса. Такая конструкция обеспечивает компактность и уменьшение металлоемкости с увеличением преобразующих устройств, что позволяет увеличить коэффициент преобразования механической энергии в тепловую. 3 ил. |
2490564 выдан: опубликован: 20.08.2013 |
|
СЕТЬ ДЛЯ НАГРЕВАНИЯ И ОХЛАЖДЕНИЯ ЗДАНИЙ
Настоящее изобретение относится к сетям для нагревания и/или охлаждения нескольких коттеджей. В сети коттеджи (1) подсоединены к общему накопителю (2) энергии в грунте. Устройство (3) управления выполнено с возможностью перемещения теплоносителя в трубопроводе (4), подсоединенном к накопителю (2) энергии. Каждый коттедж (1) выполнен с отдельным соответствующим тепловым насосом, а каждый тепловой насос подсоединен к трубопроводу (4) так, что теплоноситель может протекать через тепловой насос. Тепловые насосы подсоединены параллельно в отношении друг друга посредством трубопровода (4), содержащего два основных трубопровода (4а, 4b) для теплоносителя. При этом два основных трубопровода (4а, 4b) выполнены сообщающимися на их концах удаленных в отношении накопителя (2) энергии. Один из основных трубопроводов выполнен с возможностью переноса теплоносителя от накопителя (2) энергии, а другой трубопровод выполнен с возможностью впоследствии переносить теплоноситель обратно к накопителю (2) энергии. Каждый тепловой насос подсоединен, с одной стороны, к одному из основных трубопроводов (4b), по которому теплоноситель перемещается к соответствующему тепловому насосу, и с другой стороны, к другому основному трубопроводу (4а), через который теплоноситель опять перемещается обратно к накопителю (2) энергии. При этом, по меньшей мере, один из тепловых насосов, установленных в коттеджах (1), выполнен с возможностью по желанию генерировать тепло или холод для локального использования в коттедже в виде нагревания воздуха в помещении и/или водопроводной воды или охлаждения воздуха в помещении. Решается задача повышения экономичности нагревания и/или охлаждения множества коттеджей. 2 н. и 8 з.п. ф-лы, 3 ил. |
2486416 выдан: опубликован: 27.06.2013 |
|
СИСТЕМА ДЛЯ ИЗВЛЕЧЕНИЯ ГИДРОТЕРМАЛЬНОЙ ЭНЕРГИИ ИЗ ГЛУБОКОВОДНЫХ ОКЕАНИЧЕСКИХ ИСТОЧНИКОВ И ДЛЯ ИЗВЛЕЧЕНИЯ РЕСУРСОВ СО ДНА ОКЕАНА
Группа изобретений относится к вариантам системы и вариантам способа извлечения гидротермальной энергии из глубоководных океанических источников и для извлечения ресурсов со дна океана. Система с возможностью использования перегретых естественным путем флюидов, добываемых из гидротермальных каналов, с целью освоения и применения практически неограниченного количества тепловой энергии, содержащейся в указанных флюидах. Система содержит основную систему, состоящую из трех частей: воронки, секций трубы и любой комбинации нескольких механических креплений. Извлекаемую тепловую энергию используют для привода паровых турбин или другого оборудования для выработки электроэнергии, которую транспортируют на земную поверхность, опреснения воды или для любого другого производства, требующего применения тепловой энергии. Кроме того, указанную тепловую энергию можно одновременно или отдельно вводить в извлекающую установку для извлечения ресурсов с целью извлечения ценных металлов, минеральных и химических веществ без модификации системы. Технический результат заключается в обеспечении надежного механизма извлечения со дна океана тепловой энергии и таких ценных ресурсов, как минералы, металлы и химические вещества. 9 н. и 28 з.п. ф-лы, 5 ил. |
2485316 выдан: опубликован: 20.06.2013 |
|
ВАРИАТОРНЫЙ ТЕПЛОГЕНЕРАТОР
Изобретение относится к отопительной технике и может быть использовано для нагрева воды для горячего водоснабжения и отопления, а также освещения помещений с использованием энергии ветра. Теплогенератор содержит цилиндрический корпус, крышку и днище. Внутри корпуса на кольце, прикрепленном к стенке, установлен импульсный вариатор скорости, имеющий ведущий вал с тремя рядами лопастей, в верхней его части. На крышке установлены: электрический генератор, через фрикционные диски механически связанный с ведущим валом, а также электрический аккумулятор, связанный проводами с генератором и электрощитом. Под крышкой внутри корпуса установлен трубчатый змеевик, имеющий входной и выходной патрубки, соединенные с системами холодного и горячего водоснабжения. Теплогенератор компактен, имеет значительное количество вращающихся деталей, что увеличивает его термический КПД. 2 ил. |
2484389 выдан: опубликован: 10.06.2013 |
|
СИСТЕМА НАГРЕВА ТЕХНОЛОГИЧЕСКИХ ЖИДКОСТЕЙ И ПОЛУЧЕНИЯ ГАЗОВОЙ СМЕСИ
Изобретение относится к области теплотехники и может быть использовано для нагрева воды и различных технологических жидкостей и подготовки ее к эффективному электролизу для получения водорода и кислорода. Предложенная система содержит теплогенератор, в корпусе которого на валу закреплены два диска, образующие в объеме корпуса форкамеру, камеру междискового пространства и посткамеру. При этом расположение дисков на валу рассчитывают по определенной формуле, два диска теплогенератора выполнены с запрессованными магнитами, размещенными по периферии, над дисками установлены бифилярные катушки с рабочей и управляющей обмотками, сердечники которых посажены с натягом в корпус. Кроме того, введен управляющий блок, размещенный между рабочими и управляющими обмотками катушек, дополнительно в объем корпуса теплогенератора введен электролизер, пары электродов которого выполнены из одного игольчатого электрода, другого запрессованного в корпус, пары электродов размещены по периферии внутреннего объема корпуса в междисковом пространстве и посткамере. Система также содержит газосборник кислородно-водородной смеси, вход теплогенератора соединен с выходом ресивера, выход теплогенератора соединен с газосборником, и газосборник соединен с входом ресивера. Заявляемое техническое решение позволяет снизить энергозатраты для получения тепла и на генерацию газов. 8 ил., 3 табл. |
2484388 выдан: опубликован: 10.06.2013 |
|
СПОСОБ ПОСЕЗОННОГО ИСПОЛЬЗОВАНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА ПРИПОВЕРХНОСТНОГО ГРУНТА И СКВАЖИННЫЕ ТЕПЛООБМЕННИКИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ВАРИАНТОВ СПОСОБА
Изобретение относится к технологиям и средствам автономного отопления объектов различного назначения с комплексным использованием, на основе скважинных циркуляционных систем закрытого типа и тепловых насосов, низкопотенциальных возобновляемых тепловых источников из окружающей среды. При осуществлении способа в отопительный сезон производят отбор из грунта низкопотенциального тепла. Для этого осуществляют подачу жидкого теплоносителя через слои грунта с помощью основной замкнутой циркуляционной системы с установленными в ее составе путем применения скважин вертикальными контурами закрытого типа. Далее осуществляют передачу тепла с преобразованием его путем использования теплонасосного цикла до более высокого температурного уровня, к теплоснабжающей сети объекта энергообеспечения. В межотопительный период переходят к аккумулированию в грунте внешних тепловых сбросов, переводя подачу теплоносителя через слои грунта на дополнительную замкнутую циркуляционную систему с установленным в ее составе промежуточным теплообменником утилизации тепловых сбросов. При переходе от отбора тепла к аккумулированию тепловых сбросов меняют глубину подачи теплоносителя через слои грунта от уровня пересечения вертикальными контурами одного или нескольких водоносных слоев грунта до уровня выше кровли верхнего водоносного слоя. Для этого часть контуров, используемых для отбора тепла из грунта, применяют при отборе тепла и аккумулировании тепловых сбросов по укороченному варианту, путем установки этих контуров в составе дополнительной циркуляционной системы с длиной, соответствующей второму из указанных уровней. При этом остальные контура устанавливают в составе основной циркуляционной системы с длиной, соответствующей первому уровню. Способ позволяет при переходе от отбора тепла грунта к аккумулированию тепловых сбросов менять глубину подачи теплоносителя через слои грунта - от уровня пересечения вертикальными контурами в составе основной циркуляционной системы одного или нескольких водоносных слоев грунта до уровня выше кровли верхнего водоносного слоя, устанавливая в соответствии с последним уровнем в составе дополнительной циркуляционной системы вертикальные контура, длину которых выбирают укороченной относительно выбранной в соответствии с первым уровнем длины контуров основной циркуляционной системы. Задачу посезонной смены уровней решают либо путем применения в составе контуров известных конструктивных исполнений со скважинами разной глубины, либо - на основе предложенной конструкции скважинного теплообменника. 2 н. и 5 з.п. ф-лы, 5 ил. |
2483255 выдан: опубликован: 27.05.2013 |
|
СПОСОБ ГИДРОДИНАМИЧЕСКОГО НАГРЕВА ВОДЫ И УСТАНОВКА ДЛЯ НАГРЕВА ВОДЫ
Изобретение относится к теплотехнике и может быть использовано для тепловых установок и нагрева жидкости в промышленности, жилищно-коммунальной отрасли, в сельском хозяйстве. Задачей изобретения является получение более энергоэффективного способа и экономичной установки для нагрева воды. Технический результат достигается в теплогенераторе, установленном в замкнутом контуре, при котором формируют вихревой поток воды, за счет преобразования создаваемого насосом напора, и ускоряют полученный поток в ускорителе движения воды, с последующим отводом получаемого в теплогенераторе тепла от выходящего потока воды к потребителю. При этом на входе в теплогенератор поток воды разрывают воздушной полостью в зоне ее фазового перехода, в которой обеспечивают соударение капель воды при ее выходе в конусах распыления. На входе корпуса теплогенератора образована воздушная полость, а улитка имеет форму логарифмической спирали, причем истечение жидкости из улитки в вихревую трубу осуществляется через полюс логарифмической спирали, а между всасывающим и напорным трубопроводами установлен центробежный насос и запорный вентиль. 2 н. и 7 з.п. ф-лы, 1 ил. |
2480682 выдан: опубликован: 27.04.2013 |
|
ПОЛИФУНКЦИОНАЛЬНЫЙ СТУПЕНЧАТЫЙ ВИХРЕВОЙ ОБОГРЕВАТЕЛЬ
Изобретение относится к газовой промышленности и может быть использовано для обогрева помещений и основного оборудования газораспределительных станций и газораспределительных пунктов путем трансформации энергии давления транспортируемого газа в тепловую. Техническим результатом является повышение надежности и эффективности полифункционального ступенчатого вихревого обогревателя. Технический результат достигается в полифункциональном ступенчатом вихревом обогревателе, включающем в себя нить редуцирования, соединенную с входным и выходным газопроводами, в которой расположены газовый фильтр, предохранительный запорный клапан, регулятор давления, двухпоточная и однопоточная оребренные вихревые трубы, последовательно соединенные между собой по холодному потоку газа, образующие отдельные ступени, закрытые бортовым кожухом, причем входной патрубок первой ступени вихревой трубы соединен с нитью редуцирования через тройник и запорное устройство, высокотемпературный патрубок ее подключен через циклон к соплу эжектора, а низкотемпературный патрубок соединен с входным патрубком вихревой трубы второй ступени, высокотемпературный патрубок которой соединен с приемной камерой эжектора, выходной патрубок которого соединен через запорное устройство и тройник с газовым фильтром нити редуцирования, а выход конденсата из поддона циклона соединен с наружным сборником конденсата. 1 ил. |
2474769 выдан: опубликован: 10.02.2013 |
|
ГРУНТОВЫЙ ТЕПЛООБМЕННИК
Изобретение относится к теплоэнергетике и может быть использовано в устройствах, охлаждающих жилые и иные сооружения в теплый период года и нагревающих эти сооружения в холодное время года. Технический результат - снижение затрат на создание и эксплуатацию грунтовых теплообменников за счет использования уже существующих горных выработок - колодцев, вертикальных и наклонных стволов шахт, горизонтальных подземных выработок а также снижение энергозатрат на преобразование температуры. Достигается технический результат за счет того, что грунтовый теплообменник включает теплообменник потребителя, сопряженный с реверсивным устройством, заглубленный в грунтовый массив подземный теплообменник, совместно соединяющие теплообменники трубопроводы, образующие замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, а также устройство, обеспечивающее циркуляцию рабочего тела по трубам, причем подземный теплообменник выполнен в виде горной выработки с пропущенными через ее боковые стены по всей глубине в радиальном направлении последовательно или параллельно соединенными горизонтальными или наклонными трубопроводами. Горная выработка может иметь наклон в пределах от 0 до 90 градусов к горизонтальной плоскости. 1 з.п. ф-лы, 4 ил. |
2472076 выдан: опубликован: 10.01.2013 |
|
ГИДРОДИНАМИЧЕСКИЙ КАВИТАТОР
Изобретение относится к химическому оборудованию и может быть использовано в области производства пищевых продуктов, кормопроизводстве, лакокрасочной промышленности, при подготовке топливных смесей и других смежных областях. Гидродинамический кавитатор имеет неподвижную рабочую камеру в форме эллиптического тора с двумя фокусами и вращающийся диск активатора. Рабочая среда, подаваемая собственным рабочим центробежным рабочим колесом или независимым насосным агрегатом, попадает в рабочую камеру малыми порциями в моменты совпадения отверстий во вращающемся диске активатора и стенке неподвижной рабочей камеры. В зоне ближайшего фокуса образуются кавитационные парогазовые пузырьки вскипевшей жидкости. Схлопывание кавитационных пузырьков сопровождается интенсивными ударными волновыми процессами с возникновением локальных сверхвысоких давлений и температур. Ударные волны отражаются от ближайшего фокуса до стенок рабочей камеры, оттуда, в силу оптических свойств эллипса, далее отражается до следующего фокуса и т.д. Возникает резонанс ударных волн, благодаря чему достигается эффективное измельчение твердых частиц, структурное и молекулярное изменение в сложных молекулах и агломератах, диспергирование и другие физико-химические процессы. 4 ил. |
2472075 выдан: опубликован: 10.01.2013 |
|
СПОСОБ ТЕПЛОВЫДЕЛЕНИЯ В ЖИДКОСТИ
Изобретение относится к теплоэнергетике и может быть использовано в системах отопления и в аппаратах нагрева различного назначения. Предложен способ тепловыделения в жидкости, включающий создание в ней кавитации, при этом в кавитирующей в замкнутом контуре жидкости создают газовую подушку и последовательно варьируют ее объем и расход протекающей жидкости до установления в ней автоколебательного режима, причем источником колебаний служит центробежная форсунка, а для варьирования газовой подушки замкнутый контур снабжен расширительной емкостью с перемещающимся в ней поршнем, причем меньшую часть жидкости, протекающей по контуру, дополнительно подогревают до температуры, близкой к перегреву в теплообменнике перед поступлением в кавитатор (центробежную форсунку), а в качестве теплоносителя для теплообменника используют горячую воду, или пар, или электроэнергию. Способ позволяет интенсифицировать выделение тепла в замкнутом контуре, по которому циркулирует жидкость за счет предварительного подогрева жидкости перед подачей ее в кавитатор (центробежную форсунку). Предварительный подогрев жидкости осуществляется до температуры, близкой к перегреву, что обеспечивает более интенсивное образование кавитационных пузырей и выделению большого количества энергии при их схлопывании. 1 ил. |
2471130 выдан: опубликован: 27.12.2012 |
|
РАЗОГРЕВАТЕЛЬ ТУРБУЛЕНТНЫЙ
Изобретение относится к теплотехнике и может применяться для разогрева нефтепродуктов, в отопительной системе зданий и других отраслях. Технической задачей изобретения является уменьшение потерь тепла в окружающую среду и повышение эффективности нагрева жидкости. Поставленная цель достигается за счет того, что внутренняя поверхность корпуса имеет покрытие из металлов алюминия, меди, серебра, никеля, хрома или цинка с отражательной способностью теплового (инфракрасного) излучения от 90 до 99% и имеющий шероховатость поверхности покрытия от 0,2 мкм до 3,2 мкм, а наружная поверхность корпуса покрыта теплоизолирующей краской. В результате снижения потерь тепла во внешнюю среду интенсивность нагрева жидкости возрастает на 10-15%. 1 ил. |
2468306 выдан: опубликован: 27.11.2012 |
|
ЭКОКОМПЛЕКС НА ЭНЕРГИИ ЗЕМНЫХ НЕДР
Изобретение относится к теплоэнергетике. Предложен экокомплекс на энергии земных недр, обеспечивающий комфортные условия для проживания использующий энергию земных недр, доставляемую рабочими телами, которыми являются электрический ток, поступающий по электрическим сетям, и воздух, поступающий из атмосферы по каналу, находящемуся на глубине от земной поверхности, внутри которого находятся турбина привода электрогенератора и водовоздушный теплообменник, причем турбина привода электрогенератора находится на выходе из нижней части канала на глубине более 4000 метров Экосистема позволяет решить проблему комфортного проживания человека в северных широтах и не только, учитывая процессы, связанные с климатическими изменениями, происходящими на Земле. 3 з.п. ф-лы, 4 ил. |
2464503 выдан: опубликован: 20.10.2012 |
|
СПОСОБ ЭЛЕКТРОКАВИТАЦИОННОГО НАГРЕВА ЖИДКОСТИ И ПРОТОЧНЫЙ ЭЛЕКТРОКАВИТАЦИОННЫЙ НАГРЕВАТЕЛЬ НА ЕГО ОСНОВЕ
Изобретение относится к теплоэнергетике, в частности к теплогенераторам кавитационного типа, и может быть использовано в системах горячего водоснабжения, отопления и устройствах нагрева жидкости различного назначения. Согласно изобретению электрокавитационный нагрев жидкости осуществляют путем подачи жидкости в рабочую камеру, формирования в ней вихревого потока жидкости и обеспечения кавитационного режима течения вихревого потока при резонансном усилении возникающих в этом потоке механических колебаний с последующим отводом нагретой жидкости потребителю, причем при подаче жидкости в рабочую камеру создают скоростную расширяющуюся жидкостную струю, в рабочей камере обеспечивают одновременное широкополосное резонансное усиление всех собственных частот вихревого потока жидкости, включая меняющие свою частоту вихревые колебания жидкости и ультразвуковые волны кавитационного шума охлопывающихся пузырьков, а внутренний объем рабочей камеры пронизывают постоянным и/или переменным электрическим полем. Техническим результатом изобретения является повышение эффективности технологии нагрева жидкости, упрощение устройства и снижение эксплуатационных затрат при соблюдении экологических и других требований безопасности. 2 н. и 4 з.п. ф-лы, 1 ил. |
2460019 выдан: опубликован: 27.08.2012 |
|
НАГРЕВАТЕЛЬ
Изобретение относится к энергетике и может использоваться для нагрева жидкостей. Задачей изобретения является создание устройства, способного интенсивно разогревать теплоноситель вращающимся магнитным полем. Для решения поставленной задачи предложен нагреватель, состоящий из корпуса, расположенного в нем ротора с винтовыми нагнетающими канавками и обратными канавками, направление которых противоположно нагнетающим и выполненные на роторе, причем корпус на внутренней поверхности снабжен трехфазной обмоткой, и имеет провода для подвода электрического тока к трехфазной обмотке, при этом ротор неподвижно соединен уплотнением с корпусом и изготовлен из немагнитного материала: меди, бронзы, латуни, алюминия или силумина, имеет центральное отверстие для вентиляции воздуха, а полость между внутренней поверхностью корпуса и наружной поверхностью ротора заполнена трансформаторным маслом, в которое введены наночастицы карбонильного железа размером от 10 до 15 нанометров в количестве 3÷16 объемных процентов от объема трансформаторного масла, покрытые поверхностно-активным веществом и олеиновой кислотой. 1 з.п. ф-лы, 2 ил. |
2459158 выдан: опубликован: 20.08.2012 |
|
ГЕНЕРИРУЮЩЕЕ УСТРОЙСТВО ХРАНИЛИЩА ВЫСОКОТЕМПЕРАТУРНОГО ТЕРМОИЗЛУЧАТЕЛЯ (ВАРИАНТЫ)
Изобретение относится к генерирующему устройству хранилища высокотемпературного излучателя. Труба (4) имеет нижний участок по существу в форме пирамиды и верхний участок, образующий цилиндрический участок (4а), который продолжается с заданным размером вверх и расположен в потолочной части здания (3) склада (1) для временного хранения горячекатаного рулона (2), который является полуфабрикатом из железа и стали, выступающим в качестве высокотемпературного термоизлучателя, который изготовлен с использованием оборудования для горячей прокатки металлургического завода. Электрогенерирующая турбина (5) расположена в заданном положении в цилиндрическом участке. Приточный канал (7) расположен на нижнем концевом участке боковых стенок здания. Горячекатаные рулоны, которые находятся при высокой температуре после изготовления, последовательно подаются на склад для рулонов и накапливаются и хранятся до переноса к следующему этапу обработки. Восходящий воздушный поток образуется последовательным нагревом воздуха, введенного в здание через приточный канал, используя тепло, удерживаемое в горячекатаных рулонах. Электрогенерирующие турбины вращаются восходящим воздушным потоком. В результате, тепло, удерживаемое в термоизлучателе, может эффективно использоваться, то есть производится рекуперация тепла. 5 н. и 9 з.п. ф-лы, 17 ил. |
2458228 выдан: опубликован: 10.08.2012 |