Комбинированные нагревательные и охладительные системы, например работающие одновременно или попеременно – F25B 29/00

МПКРаздел FF25F25BF25B 29/00
Раздел F МАШИНОСТРОЕНИЕ; ОСВЕЩЕНИЕ; ОТОПЛЕНИЕ; ДВИГАТЕЛИ И НАСОСЫ; ОРУЖИЕ И БОЕПРИПАСЫ; ВЗРЫВНЫЕ РАБОТЫ
F25 Холодильная или морозильная техника; комбинированные системы для нагрева и охлаждения; системы с тепловыми насосами; производство или хранение льда; сжижение или отверждение газов
F25B Холодильные машины, установки или системы; комбинированные системы для нагрева и охлаждения; системы с тепловыми насосами
F25B 29/00 Комбинированные нагревательные и охладительные системы, например работающие одновременно или попеременно

Патенты в данной категории

ТЕПЛОГЕНЕРИРУЮЩИЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ

Изобретение относится к электротехнике, а именно к теплогенерирующему электромеханическому преобразователю, предназначенному для нагрева и/или перемещения жидкой или газообразной среды. Устройство содержит дополнительный неподвижный элемент, выполненный из антифрикционного неэлектропроводящего материала, выполняющего функции радиального и/или упорного подшипника скольжения, из полимерного композиционного материала на основе эпоксидно-диановой смолы с наполнителем из порошка фторопласта, рубленого стекловолокна и дополнительно оксида алюминия Al2O3 или двуокиси кремния SiO2, что позволяет увеличить количество отводимого от первичной обмотки тепла. Увеличение коэффициента теплопроводности неподвижного теплоизолирующего элемента обеспечивает снижение температуры первичной обмотки теплогенерирующего электромеханического преобразователя, что соответственно повышает надежность его работы. 2 табл

2525234
выдан:
опубликован: 10.08.2014
СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛА В ХОЛОД (ВАРИАНТЫ) УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) И СИСТЕМА ПРЕОБРАЗОВАНИЯ ТЕПЛА В ХОЛОД

Группа изобретений относится к области теплообмена и может быть использована для охлаждения воздуха или оборудования, а также для утилизации сбросного тепла. Технический результат - повышение эффективности теплообмена, экономичности, экологичности, а также повышение надежности и долговечности, расширение области применения, расширение функциональных возможностей. Достигается тем, что в одном из вариантов устройство преобразования тепла в холод содержит первый теплообменник 2, парогенератор 3 жидкий теплоноситель (хладагент) 4, тонкую пластину с отверстием 5, конденсатор 6, сетку 7, второй теплообменник 8, клапан перелива 9, вертикальный трубопровод 10, клапан противодавления 11, дозатор 12, турбину с магнитной муфтой 13, вентилятор 14, вторую тонкую пластину с отверстием 15, солнечный коллектор 16. 5 н. и 9 з.п. ф-лы, 3 ил.

2511333
выдан:
опубликован: 10.04.2014
ВОДООЧИСТИТЕЛЬ

Изобретение относится к устройствам для доочистки питьевой воды. Водоочиститель включает последовательно расположенные в продольном сосуде 1 зоны: замораживания воды, вытеснения примесей из фронта льда и концентрации примесей в виде рассола, перехода воды из твердого состояния в жидкое. В зоне замораживания установлена кольцевая морозильная камера 2, за которой смонтировано приводное устройство продольного перемещения замороженного стержня воды 3 в виде зубчатых роликов 4. В зоне вытеснения примесей размещено по центру замороженного стержня разобщающее устройство, за которым расположен кольцевой нагревательный элемент 11. Раздельные патрубки 8, 12, расположенные в нижней части продольного сосуда, установлены с возможностью вывода примесей и талой воды. Приводное устройство оборудовано дополнительным усилителем перемещения замороженного стержня в виде бесконечной ленты 15, имеющей привод движения, кинематически связанный с вращением зубчатых роликов 4. Положение бесконечной ленты 15 относительно продольного сосуда 1 обеспечивается натяжными роликами 16. Изобретение позволяет повысить производительность и долговечность водоочистителя. 3 з.п. ф-лы, 1 ил.

2510637
выдан:
опубликован: 10.04.2014
УСТРОЙСТВО И СПОСОБ ВОЗДУШНОГО ОТОПЛЕНИЯ ВОЗДУШНОГО ОХЛАЖДЕНИЯ И ВЕНТИЛЯЦИИ ПОМЕЩЕНИЙ

Устройство и способ воздушного отопления воздушного охлаждения и вентиляции помещений при помощи электроэнергии центробежных воздушных насосов, аммиачного теплового насоса управляемого электродвигателя, теплообменников, радиаторов, управляемого редукционного клапана, реверсивных электродвигателей, терморегуляторов, реле давлений. В режиме воздушного отопления и вентиляции помещений аммиачный тепловой насос (АТН) при кипении NH3 отнимает тепло от воздуха помещений и выбрасывает воздух помещений в атмосферу с температурой, равной температуре атмосферы. В режиме воздушного охлаждения и вентиляции помещений АТН при кипении NH3 отнимает тепло от атмосферного воздуха и охлажденный воздух выбрасывает в помещения. Обеспечивает свежий воздух и постоянный климат помещений с колебанием температуры воздуха помещений от +20 до +25°С при воздушном отоплении и колебания температуры воздуха помещений от +25 до +20°С при воздушном охлаждении помещений. 2 н. и 2 з.п. ф-лы, 2 ил.

2490560
выдан:
опубликован: 20.08.2013
УНИВЕРСАЛЬНАЯ КОМПЛЕКСНАЯ ЭНЕРГОСИСТЕМА

Универсальная комплексная энергосистема для получения электричества, холода и тепла содержит ветродвигатель, агрегатированный с приводимым им через энергоузел компрессором, накопитель воздуха, теплообменник с горячим и холодным контурами, потребитель теплого воздуха, турбодетандер, агрегатированный с приводимым им электрогенератором, и потребитель холодного воздуха. Компрессор соединен газодинамически входом с атмосферой, а выходом - через горячий контур теплообменника с входом накопителя воздуха. Турбодетандер соединен газодинамически входом через запорный орган с выходом накопителя воздуха, а выходом с входом потребителя холодного воздуха. Вход и выход холодного контура теплообменника соединены между собой через потребитель теплого воздуха. Энергосистема включает источник природного газа повышенного давления, потребитель природного газа, дополнительный компрессор с приводом и дополнительный турбодетандер с потребителем мощности. Турбодетандер с потребителем мощности заключены в капсулу. Дополнительный компрессор газодинамически входом соединен с атмосферой, а выходом - через запорный орган с входом накопителя воздуха. Дополнительный турбодетандер газодинамически входом через запорные органы соединен с источником природного газа и с выходом накопителя воздуха, а выходом - через запорные органы с потребителем природного газа и со входом потребителя холодного воздуха. Изобретение позволяет стабильно и эффективно обеспечить потребителей заданным количеством электроэнергии, холода и тепла при пониженном уровне ветропотенциала

с дополнительным повышением потребительских свойств энергосистемы. 11 з.п. ф-лы, 2 ил.

2489589
выдан:
опубликован: 10.08.2013
ТРИГЕНЕРАЦИОННАЯ УСТАНОВКА НА БАЗЕ МИКРОТУРБИННОГО ДВИГАТЕЛЯ

Изобретение относится к области теплоэнергетики и энергосбережения, предназначено для одновременной выработки электрической, тепловой энергий и низкотемпературного носителя. Тригенерационная установка на базе микротурбинного двигателя включает в себя компрессор, камеру сгорания топлива, газовую турбину, электрогенератор, теплообменник-регенератор с линиями прямого и обратного потоков. Газовая турбина находится на одном валу с компрессором и электрогенератором. Линия подачи воздуха в компрессор и теплообменник-регенератор с линиями прямого и обратного потоков являются частью двигателя. К микротурбинному двигателю присоединяется теплообменник-регенератор с линиями подающего и подпитывающего потоков, на выходе из которого установлена абсорбционная холодильная машина. Достигается повышение коэффициента полезного действия, энергосбережение, энергоэффективность за счет отдачи тепла в микротурбинном двигателе, теплообменнике-регенераторе для горячего водоснабжения и абсорбционной холодильной машине от сгоревших газов топлива для выработки электрической и тепловой энергий и низкотемпературного носителя для потребителей. 1 ил.

2487305
выдан:
опубликован: 10.07.2013
СПОСОБ ТЕПЛОХЛАДОСНАБЖЕНИЯ

Изобретение относится к теплонасосной и холодильной парокомпрессионной технологии и технике. Хладагент после конденсации разделяют в вихре на паровую и переохлажденную жидкостную фазы за счет разницы давлений конденсации и всасывания, при этом пар направляют на сжатие совместно с парами из испарителя, небольшую долю переохлажденной жидкой фазы распыливают и подают во всасывающий тракт компрессора в количестве, обеспечивающем минимальный перегрев паров в конце сжатия, а основной поток переохлажденного хладагента передают в испаритель. Изобретение позволяет снизить удельные затраты внешней энергии на перенос единицы тепла по сравнению с другими обратными циклами и повысить коэффициент преобразования теплового насоса. 3 ил., 2 табл.

2485419
выдан:
опубликован: 20.06.2013
КРИОХИРУРГИЧЕСКИЙ АППАРАТ

Изобретение относится к медицинской технике и может быть использовано в хирургии для криодеструкции патологических новообразований. Криохирургический аппарат включает резервуар с жидким азотом, теплоизолированные трубки подвода и отвода хладагента, рабочий наконечник и систему откачки газа, выполненную в виде форвакуумного насоса. При этом на входе теплоизолированной трубки подвода хладагента установлен обратный клапан, на входе форвакуумного насоса установлен электромагнитный двухходовой клапан с дросселем. Также криохирургический аппарат снабжен внешней системой газообеспечения и съемным криоинструментом, на дистальном конце которого находится рабочий наконечник. Использование изобретения позволяет форсировать режим отогрева наконечника. 1 ил.

2483691
выдан:
опубликован: 10.06.2013
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕНОСА ТЕПЛА ОТ ПЕРВОЙ СРЕДЫ КО ВТОРОЙ

Изобретение относится к теплотехнике и может быть использовано в энергоустановках. Изобретение относится к способу переноса тепла от первой, относительно холодной, среды ко второй, относительно горячей, среде, включающему стадии вращения содержащейся в некотором объеме (6) сжимаемой текучей среды вокруг оси вращения для создания таким образом радиального градиента температуры в этой среде, и нагревания второй среды посредством текучей среды в секции текучей среды, относительно удаленной от оси вращения. Данное изобретение также относится к устройству для осуществления указанного способа. Технический результат - эффективное получение среды с высокой температурой. 2 н. и 12 з.п. ф-лы, 5 ил.

2476801
выдан:
опубликован: 27.02.2013
СИСТЕМА ТЕПЛОХЛАДОСНАБЖЕНИЯ

Изобретение относится к гелиотехнике и может быть использовано в системах солнечного теплохладоснабжения. Сущность изобретения заключается в том, что система теплохладоснабжения, содержащая жидкостную емкость с прозрачным ограждением, заполненную низкокипящим теплоносителем, и паровую емкость с теплоизоляционной крышкой и теплообменником, дополнительно содержит абсорбционную камеру, низкотемпературный теплообменник и вентили для регулирования режима. Технический результат - повышение роли использования системы для поддержания комфортных условий в помещениях и в холодный, и в жаркий периоды времени. 1 ил.

2460949
выдан:
опубликован: 10.09.2012
КАТАЛИТИЧЕСКИЕ СИСТЕМЫ И ПРОЦЕССЫ ПОЛИМЕРИЗАЦИИ

Изобретение относится к способу полимеризации олефинов с использованием мультимодальных каталитических систем, к способу контроля старения мультимодальной каталитической системы и к контейнеру или резервуару. Первый способ включает (а) приготовление каталитической системы, включающей бисамидную каталитическую систему и небисамидную каталитическую систему; (b) хранение мультимодальной каталитической системы при регулируемой температуре менее чем 1°С; (с) контактирование мультимодальной каталитической системы с С24-альфа-олефином в процессе полимеризации и (d) получение мультимодального полимера. Второй способ включает (а) приготовление указанной выше каталитической системы и (b) транспортирование этой системы в переносном резервуаре, где переносной резервуар поддерживается при регулируемой температуре менее чем 1°С или менее чем -9°С. Контейнер или резервуар содержит мультимодальную каталитическую систему, в котором она поддерживается при регулируемой температуре. Заявленная группа изобретений позволяет свести к минимуму потери продуктивности каталитической системы при хранении/старении. Результат реакции полимеризации в присутствии указанных каталитических систем является более предсказуемым и устойчивым в течение длительных периодов времени. 3 н. и 32 з.п. ф-лы, 4 ил., 6 табл., 6 пр.

2452740
выдан:
опубликован: 10.06.2012
СПОСОБ ПОЛУЧЕНИЯ ХОЛОДА

Способ получения холода включает накопление в холодный период года энергии холода в объеме рабочего тела его теплообменом с окружающей средой, термоизолирование объема рабочего тела, отбор аккумулированного холода в теплоноситель. В качестве рабочего тела используют низкокипящую жидкость, при этом используют два герметичных бака, выполненных с возможностью работы при давлении до 2,5 МПа, которые сообщаются друг с другом паропроводом, снабженным управляемым перепускным клапаном. В первом из них размещают низкокипящую жидкость при температуре окружающей среды, предпочтительно, ниже -20°С и давлении около 0,5 МПа, после чего теплоизолируют названные герметичные баки и организуют теплообмен поверхности бака, заполненного низкокипящей жидкостью, с потоком теплоносителя, имеющего температуру, большую температуры окружающей среды во время заполнения бака низкокипящей жидкостью. При достижении давления паров низкокипящей жидкости в полости первого бака уровня предпочтительно, 2,0 МПа производят сброс паров из него в полость второго бака, при этом организуют отвод тепла с поверхности второго бака в поток хладагента с температурой, меньшей температуры паров низкокипящего вещества или в окружающую среду. После выравнивания термодинамических характеристик рабочего тела в обоих баках и перед восстановлением запаса холода в первом баке конденсат возвращают в его полость, освобождая от него второй бак. Достигаемый технический результат: повышение холодопроизводительности установки и снижение ее массо-габаритных характеристик. 2 з.п. ф-лы, 1 ил.

2450222
выдан:
опубликован: 10.05.2012
АБСОРБЦИОННЫЙ ХОЛОДИЛЬНИК

Изобретение относится к холодильной технике, в частности к холодильникам абсорбционного типа, и может быть использовано для охлаждения помещений и регулировки их температурного режима в солнечных жарких регионах. Автономный абсорбционный холодильник без движущихся узлов с жидким абсорбентом включает генератор с источником нагрева раствора хладагента, конденсатор, абсорбер, испаритель, выполненный в виде замкнутого резервуара, термосифон с источником нагрева, последовательно соединенные замкнутым трубопроводом. Генератор снабжен дополнительными источниками нагрева, одним из которых является солнечное излучение. Абсорбер сопряжен с испарителем посредством ряда, распределенных по площади абсорбера и испарителя теплоизолированных трубок, через которые газообразный хладагент поступает из испарителя в абсорбер. Техническим результатом предложенного технического решения являются повышение эффективности и уменьшение габаритов холодильника, работающего с использованием солнечной энергии. Кроме основного результата предложенное техническое решение позволяет повысить надежность холодильника при временном отключении питания и работать длительное время без электрического питания в солнечных, жарких регионах, даже когда ночная температура превышает температуру охлаждаемого объекта. 18 з.п. ф-лы, 5 ил.

2443948
выдан:
опубликован: 27.02.2012
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ С ТЕПЛООБМЕННЫМИ АППАРАТАМИ

Изобретение относится к теплотехнике и может быть использовано в энергосберегающих системах оборотного водоснабжения. В системе оборотного водоснабжения с теплообменными аппаратами, содержащей охлаждаемое технологическое оборудование, связанное двумя параллельными системами трубопроводов с теплообменниками, при этом первая система - трубопроводы, подающие нагретую в технологическом оборудовании воду для охлаждения в теплообменных аппаратах; вторая система - трубопроводы, подающие охлажденную в теплообменных аппаратах воду на технологическое оборудование, а система теплообменных аппаратов содержит, по крайней мере, два последовательно соединенных теплообменника, первый из которых подсоединен трубопроводами к источнику тепла и к системе, подающей воду на горячее водоснабжение, а второй - теплообменник, в котором происходит охлаждение нагретой в технологическом оборудовании воды, подсоединен к магистральному водопроводу и через насос связан с системой трубопроводов, подающих охлажденную воду обратно на технологическое оборудование. Технический результат - повышение производительности работы системы. 1 ил.

2442936
выдан:
опубликован: 20.02.2012
МАРТЕНСИТНАЯ ТУРБИННАЯ МАШИНА

Изобретение относится к области машиностроения, а именно к турбинным энергетическим машинам, для преобразования энергии, в которых используются термочувствительные элементы из сплава, обладающего эффектами памяти формы и сверхупругости, и может быть использовано для охлаждения или нагрева материальных объектов. Мартенситная турбинная машина содержит несколько шкивов и огибающий их кольцевой термочувствительный элемент в виде цилиндрической проволочной спирали из сплава с эффектом памяти формы. Один шкив расположен в зоне реализации в термочувствительном элементе аустенитного превращения, а другой шкив - мартенситного. Указанные зоны выполнены в виде резервуаров, по меньшей мере, частично заполненных горячей и холодной жидкостью. Машина дополнительно содержит зону тепловой регенерации, расположенную по направлению перемещения термочувствительного элемента между зонами реализации аустенитного и мартенситного превращений. Машина дополнительно содержит привод, соединенный, по меньшей мере, с частью шкивов. Термочувствительный элемент изготовлен из сплава, обладающего эффектом сверхупругости, например из никелида титана. Температура завершения аустенитного превращения указанного сплава ниже температуры в любой из указанных зон. Изобретение позволяет повысить энергетическую эффективность мартенситной турбинной машины. 3 ил.

2431058
выдан:
опубликован: 10.10.2011
ТЕПЛОГЕНЕРИРУЮЩИЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ

Изобретение относится к области электротехники и может быть использовано для промышленных, сельскохозяйственных и бытовых нужд. В предлагаемом теплогенерирующем электромеханическом преобразователе, предназначенном для нагрева и/или перемещения жидкой или газообразной среды, используется дополнительный теплоизолирующий элемент из антифрикционного неэлектропроводящего материала, выполняющий функцию радиального и/или упорного подшипника скольжения, составляющий единое целое с магнитопроводом и первичной обмоткой преобразователя. При этом упомянутый дополнительный теплоизолирующий элемент состоит из полимерного композиционного материала на основе эпоксидно-диановой смолы с наполнителем из порошка фторопласта-4 и рубленого стекловолокна при определенном весовом соотношении перечисленных компонентов. Технический результат - снижение механических потерь на трение и повышение КПД путем снижения коэффициента трения между подвижной и неподвижной деталями теплогенерирующего электромеханического преобразователя без ухудшения прочностных характеристик упомянутой дополнительной детали. 3 ил.

2410852
выдан:
опубликован: 27.01.2011
СПОСОБ КОМБИНИРОВАННОГО ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ, ТЕПЛА И ХОЛОДА

Изобретение относится к теплоэнергетике. Способ комбинированного производства электроэнергии, тепла и холода включает сжатие атмосферного воздуха и/или топлива с последующим сжиганием их в камере сгорания и преобразованием теплоты продуктов сгорания в механическую энергию с помощью теплового двигателя, преобразование механической энергии в электрическую в электрогенераторе, передачу части тепловой энергии, отведенной от теплового двигателя, на преобразование в абсорбционной холодильной машине в энергию холода. Часть тепловой энергии, отведенной от теплового двигателя, используют для теплоснабжения потребителей. Преобразованную в абсорбционной холодильной машине тепловую энергию в энергию холода используют для холодоснабжения потребителей. При возникновении в периоды неполной загрузки абсорбционной холодильной машины избыточной энергии холода ее используют для охлаждения атмосферного воздуха перед сжатием. Технический результат - повышение КПД и электрической мощности установки за счет использования свободной мощности холодильной машины. 1 ил.

2399781
выдан:
опубликован: 20.09.2010
ТРАНСПОРТНАЯ ХОЛОДИЛЬНАЯ УСТАНОВКА (ВАРИАНТЫ) И ОХЛАДИТЕЛЬ ДЛЯ ТРАНСПОРТНОЙ ХОЛОДИЛЬНОЙ УСТАНОВКИ (ВАРИАНТЫ)

Предложена транспортная холодильная установка, включающая генератор, установленный с объединенным с ним приводным двигателем, в которой генератор охлаждается циркуляцией масла по обмоткам статора и ротору, образуя тем самым систему охлаждения, изолированную от окружающей среды и способную повышать эффективность охлаждения. В одном варианте выполнения циркуляция масла двигателя объединена с генератором так, что одновременно обеспечивается также и охлаждение генератора. В других вариантах выполнения масло содержится полностью внутри генератора, и его циркуляция обеспечивается различными способами, например нагнетанием и разбрызгиванием, маслоотражателем и полным погружением. Техническим результатом изобретения является существенное улучшение эффективности охлаждения транспортной холодильной установки. 4 н. и 22 з.п. ф-лы, 6 ил.

2399001
выдан:
опубликован: 10.09.2010
БЛОК ИСТОЧНИКА ТЕПЛА СИСТЕМЫ ОХЛАЖДЕНИЯ И СИСТЕМА ОХЛАЖДЕНИЯ

Блок источника тепла системы охлаждения содержит контур (12) источника тепла. Контур (12) включает в себя первый газовый порт (31), постоянно сообщающийся с напорной стороной компрессора (14), второй газовый порт (32), постоянно сообщающийся со стороной всасывания компрессора (14), третий газовый порт (33), избирательно сообщающийся с одной из первой газовой линии (25) и второй газовой линии (26), жидкостный порт (34), постоянно сообщающийся с концом впуска/выпуска жидкости теплообменника (15) источника тепла, первый механизм (17) переключения, который переключает состояние сообщения конца впуска/выпуска газа теплообменника (15) источника тепла, и второй механизм (18) переключения, который переключает состояние сообщения третьей газовой линии (27). Система охлаждения содержит блок (10) источника тепла системы (5) и блок (7) потребления тепла, имеющий контур (8) потребления тепла, включающий в себя механизм (41) понижения давления и теплообменник (40) потребления тепла. Контур (9) хладагента создан соединением третьего газового порта (33) контура (12) блока (10) источника тепла и конца впуска/выпуска газа контура (8) потребления тепла и соединением жидкостного порта (34) контура (12) и конца впуска/выпуска жидкости контура (8) потребления тепла. Использование изобретения позволит использовать вспомогательный теплообменник в режимах и охлаждения и нагревания. 2 н. и 3 з.п. ф-лы, 15 ил.

2395044
выдан:
опубликован: 20.07.2010
ВОЗДУШНАЯ ТУРБОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Установка предназначена преимущественно для работы в небольших населенных пунктах, полевых условиях и транспортных средствах. Установка содержит компрессор с приводом, турбодетандер, теплообменник, помещение, соединенные магистралями с клапанами. Установка дополнительно снабжена электрогенератором, эжектором, регулятором и суфлером, где электрогенератор кинематически связан с турбодетандером. Выход компрессора соединен магистралями с клапанами с входом турбодетандера до или через теплообменник. Выход из турбодетандера соединен с входом высоконапорной части эжектора, выход которого соединен с помещением. Вход низконапорной части эжектора соединен с атмосферой через регулятор. Помещение имеет два выхода, один выход соединен с входом компрессора, а другой - через суфлер соединен с атмосферой. Использование изобретения позволит обеспечить высокую экономичность при производстве и эксплуатации установки. 5 з.п. ф-лы, 2 ил., 1 табл.

2382959
выдан:
опубликован: 27.02.2010
ХОЛОДИЛЬНИК-ЭКОНОМАЙЗЕР

Изобретение относится к устройствам и системам холодотеплоснабжения жилых и производственных помещений. Холодильник-экономайзер (ХЭ) представляет собой термопреобразователь двойного назначения, в котором базовым агрегатом является бытовой холодильник с холодильным агрегатом и блоком управления. Первый и второй контуры циркуляции промежуточного теплоносителя (ПТ) состоят из внутренних сегментов, расположенных внутри ХЭ, с возможностью присоединения к ним посредством входных/выходных патрубков внешних сегментов, расположенных вне ХЭ. В корпусе ХЭ выполнены внутренние сегменты двух названных контуров циркуляции промежуточного теплоносителя, включающие дополнительный испаритель и дополнительный конденсатор, элементы гидроавтоматики первого и второго контура с трубопроводной обвязкой, средства коммутации первого и второго контуров циркуляции ПТ для осуществления прямой передачи тепла от внешнего источника к внешнему приемнику без посредства холодильного агрегата, соединяющие трубопроводы. На входах в первый и второй внутренние сегменты контуров циркуляции ПТ размещены датчики температуры ПТ, соединенные каналами связи с блоком управления. Каналы связи блока управления с входными/выходными разъемами в корпусе ХЭ выполнены с возможностью присоединения к названным разъемам каналов связи ХЭ с исполнительными и измерительными устройствами автоматики во внешних сегментах контуров циркуляции ПТ. Технический результат: расширение арсенала технических средств утилизации и использования вторичных энергоресурсов, энергоресурсов окружающей среды, экономия расхода топливных ресурсов на горячее водоснабжение, теплоснабжение и, как следствие, снижение выбросов CO2 в атмосферу. 9 ил., 2 табл.

2371643
выдан:
опубликован: 27.10.2009
УСТРОЙСТВО ПАНЕЛЬНО-ЛУЧИСТОГО ОТОПЛЕНИЯ И ОХЛАЖДЕНИЯ

Изобретение относится к области отопительной техники и систем охлаждения и может быть использовано для поддержания температурного режима в помещениях. Устройство содержит теплообменник, сопряженный по тепловому потоку с источником/приемником тепловой энергии, теплоотдающий/тепловоспринимающий трубопровод, прикрепленный к поверхности или проходящий в теле одной или нескольких теплоотдающих/тепловоспринимающих панелей, перекачивающее устройство, обеспечивающее циркуляцию рабочего тела от теплообменника к теплоотдающему/тепловоспринимающему трубопроводу и обратно, а также соединяющие их трубопроводы, которые в совокупности образуют замкнутую циркуляционную систему. Циркуляционная система снабжена дополнительными теплообменниками, сопряженными по тепловому потоку с тем же или с иным источником/приемником тепловой энергии, что и основной теплообменник системы, и последовательно сообщающимися с теплоотдающими/тепловоспринимающими трубопроводами, прикрепленными к поверхности или проходящими в теле теплоотдающих/тепловоспринимающих панелей. Форма и размеры сечения теплоотдающего/тепловоспринимающего трубопровода обеспечивают возможность перемещения парожидкостной смеси по трубопроводу в режиме, при котором порции жидкости перемещаются по трубопроводу вместе с паровыми пробками без образования застойных зон жидкости. Использование изобретения позволит обеспечить равномерную температуру греющих/охлаждающих панелей. 6 з.п. ф-лы, 2 ил.

2359180
выдан:
опубликован: 20.06.2009
УСТРОЙСТВО ПАНЕЛЬНО-ЛУЧИСТОГО ОХЛАЖДЕНИЯ

Изобретение относится к области систем охлаждения помещений, в частности к системам лучистого охлаждения, и может быть использовано для поддержания температурного режима в жилых и производственных помещениях. Панель устройства панельно-лучистого охлаждения содержит замкнутый циркуляционный контур, заполненный рабочим телом в виде жидкости и ее паров, в котором имеется участок, имеющий тепловой контакт с поверхностью охлаждающей панели, сообщающийся с ним участок, имеющий тепловой контакт с холодильной установкой, и сообщающийся с данными участками участок, имеющий тепловой контакт с устройством периодического нагрева участка до температуры, превышающей температуру остальных участков, и периодического охлаждения участка до температуры, не превышающей температуру остальных участков циркуляционного контура. Система клапанов обеспечивает преимущественно одностороннее движение рабочего тела по циркуляционному контуру. Использование изобретения позволит обеспечить равномерную температуру охлаждающих панелей. 15 з.п. ф-лы, 3 ил.

2357163
выдан:
опубликован: 27.05.2009
УСТРОЙСТВО ДЛЯ ПРЕДВАРИТЕЛЬНОГО ПОДОГРЕВА ДИЗЕЛЬНОГО ТОПЛИВА

Устройство для предварительного подогрева дизельного топлива относится к теплотехнике, а именно к теплогенераторам, и может быть использовано в дизельных двигателях транспортных средств и силовых установок. Изобретение позволяет повысить эффективность подогрева дизельного топлива, снизить энергозатраты, расширить функциональные возможности путем предварительного подогрева дизельного топлива. Устройство для подогрева жидкости содержит корпус, имеющий внутреннюю и наружную оболочки, входной патрубок, насос, средство для подачи и завихрения потока жидкости из внутренней оболочки в наружную оболочку, выходной патрубок, завихрители, расположенные во внутренней оболочке. Внутренняя и наружная оболочки корпуса расположены соосно относительно друг друга и выполнены в форме встречно-направленных и соединенных своими вершинами конических поверхностей с герметично установленными основаниями, роль ускорителя движения жидкости выполняет полость, образованная внутренней оболочкой, а средство для подачи и завихрения потока жидкости расположено перед одним из оснований и выполнено в виде уступа на секторе не менее 1/3 диаметра торца конуса внутренней оболочки, к которой тангенциально относительно конической поверхности по намеченному ходу вращения жидкости на максимальном приближении к противоположному основанию установлен входной патрубок конической формы. 4 з.п. ф-лы, 2 ил.

2342557
выдан:
опубликован: 27.12.2008
УСТРОЙСТВО ДЛЯ ВОЗДУШНОГО ТЕРМОСТАТИРОВАНИЯ КОСМИЧЕСКИХ ОБЪЕКТОВ

Изобретение относится к наземному оборудованию объектов ракетно-космической техники и обеспечивает автоматическое поддержание требуемого температурно-влажностного режима и степени чистоты среды этих объектов. Предлагаемое устройство предназначено для термостатирования космического объекта и расположенного в нем аппарата единым потоком сжатого окружающего воздуха. Данное устройство содержит магистральные трубопроводы подачи воздуха в космический объект и в аппарат. На первом из трубопроводов установлены заборное устройство, вентиляторы для сжатия и подачи воздуха, фильтры предварительной и тонкой очистки воздуха, охладители воздуха, электронагреватель и блок контроля чистоты воздуха. Охладители соединены магистралями подачи жидкого хладоносителя с холодильным центром. Блок контроля соединен кабелем связи с электронным устройством индикации, регистрации и документирования результатов контроля чистоты воздуха, расположенным в пультовой системе управления пуском. На магистральном трубопроводе подачи воздуха в аппарат установлены нагнетатель для сжатия и подачи воздуха, а также аналогичные описанным выше охладитель воздуха, электронагреватель воздуха и блок контроля чистоты воздуха, соединенный кабелем связи с электронным устройством индикации, регистрации и документирования результатов контроля чистоты воздуха. Оба магистральных трубопровода соединены друг с другом в месте, расположенном после фильтра тонкой очистки воздуха. Техническим результатом изобретения является повышение надежности и безопасности функционирования аппаратов, расположенных внутри космических объектов, в процессе их подготовки к пуску, при пуске и полете ракет-носителей. 1 ил.

2339554
выдан:
опубликован: 27.11.2008
СПОСОБ И УСТРОЙСТВО ДЛЯ ТЕРМОСТАТИРОВАНИЯ КОСМИЧЕСКИХ ОБЪЕКТОВ И ОТСЕКОВ РАКЕТОНОСИТЕЛЕЙ

Изобретение относится к ракетно-космической технике. Сущность предложенного способа заключается в том, что до заправки ракетоносителя компонентами топлива термостатирование космического объекта и отсеков ракетоносителя производится воздухом окружающей среды, сжатым, осушенным, охлажденным или нагретым до требуемых величин давления, температуры и температуры точки росы, а перед началом заправки ракетоносителя жидким водородом вместо воздуха в космический объект и отсеки ракетоносителя подают газообразный азот с теми же значениями давления, температуры и температуры точки росы, обеспечивая при этом требуемый температурно-влажностный режим и нейтральную среду, которая обеспечивает пожаровзрывобезопасность стартового комплекса при наличии утечек водорода. Способ осуществляется устройством термостатирования, в которое входят компрессор для сжатия воздуха окружающей среды, фильтр, охладители воздуха и электронагреватель воздуха. Охлаждение воздуха производится двумя потоками холодоносителя, подаваемыми в охладители воздуха из емкостей насосами, при этом холодоноситель первого потока имеет температуру от 5 до 7°С, а второго от минус 1 до минус 3°С. Нагрев воздуха производится в электронагревателе воздуха и затем воздух подается в космический объект, коллектор и далее в отсеки ракетоносителя. Перед началом заправки ракетоносителя жидким водородом подача воздуха прекращается и начинается подача газообразного азота, получаемого из жидкого азота, хранящегося в специальной емкости путем газификации его в газификаторе и нагрева до требуемой температуры в электронагревателе азота. Техническим результатом изобретения является повышение надежности, безопасности и эксплуатационных характеристик на этапе подготовки к пуску и при пуске ракетоносителей, заправляемых жидким водородом. 2 н. и 3 з.п. ф-лы, 2 ил.

2335706
выдан:
опубликован: 10.10.2008
СПОСОБ ТЕРМОСТАТИРОВАНИЯ РАКЕТ-НОСИТЕЛЕЙ ГАЗОМ ВЫСОКОГО ДАВЛЕНИЯ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретения относятся преимущественно к оборудованию и функционированию наземных стартовых комплексов. Предлагаемая система термостатирования содержит трубопроводы подачи сжатого воздуха (1) и сжатого азота (7), пневмощит управления и блок понижения давления. Пневмощит включает две пары параллельных линий с установленными в каждой из линий электропневмоклапаном (18, 19), сигнализатором давления (20, 21) и обратным клапаном (22, 23). Блок понижения давления содержит две параллельные линии (26) с установленными в каждой из них электропневмоклапаном (27), дроссельным клапаном (28), газовым редуктором (29), сигнализатором давления (31), предохранительным клапаном (32) и обратным клапаном (33). Предохранительный клапан (32) связан с дренажным трубопроводом (34), снабженным сигнализатором давления (35), электрически связанным с каждым электропневмоклапаном, и обратным клапаном (36). Согласно предлагаемому способу после заправки ракеты-носителя компонентами топлива сжатый воздух давлением до 40 МПа редуцируют до давления 8-10 МПа и не позднее чем за 15 мин до команды «Контакт подъема» перекрывают подачу сжатого воздуха и подают сжатый азот давлением до 40 МПа, который также редуцируют до давления 8-10 МПа. При срабатывании предохранительного клапана одной из линий блока понижения давления перекрывают подачу сжатого газа по данной линии и открывают подачу по параллельной линии этого блока. Также и при фиксации неисправности в одной из подающих линий пневмощита перекрывают подачу сжатого газа по данной линии и открывают его подачу по параллельной линии. Техническим результатом изобретений является повышение надежности и эксплуатационных характеристик на этапе подготовки к пуску и при пуске ракет-носителей. 2 н.п. ф-лы, 2 ил.

2335439
выдан:
опубликован: 10.10.2008
СПОСОБ ТЕРМОСТАТИРОВАНИЯ КОСМИЧЕСКОЙ ГОЛОВНОЙ ЧАСТИ ВОЗДУХОМ ВЫСОКОГО ДАВЛЕНИЯ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится преимущественно к оборудованию и функционированию наземных стартовых комплексов. Предлагаемая система термостатирования содержит трубопровод подачи сжатого воздуха (1), управляемое устройство (пневмощит) (3) и редуцирующее устройство (блок понижения давления) (4). Пневмощит включает в себя две параллельные линии (7) с установленными в каждой из них электропневмоклапаном (8), сигнализатором давления (9) и обратным клапаном (10). Блок понижения давления включает в себя также две параллельные линии (16) с установленными в каждой из них электропневмокланом (17), дроссельным клапаном (18), газовым редуктором (19), сигнализатором давления (21), предохранительным клапаном (22) и обратным клапаном (23). Предохранительный клапан (22) связан с дренажным трубопроводом (24), снабженным сигнализатором давления (25), электрически связанным с каждым электропневмоклапаном, и обратным клапаном (26). Согласно предлагаемому способу, после заправки ракеты-носителя компонентами топлива сжатый воздух давлением до 40 МПа редуцируют до давления 6-10 МПа. При срабатывании предохранительного клапана одной из линий блока понижения давления и/или при фиксации неисправности в одной из подающих линий управляемого устройства перекрывают подачу сжатого газа по данной линии и открывают подачу по параллельной линии указанных блока и/или устройства. Техническим результатом изобретения является повышение надежности на этапе подготовки к пуску и при пуске ракет-носителей с космической головной частью. 2 н.п. ф-лы, 1 ил.

2335438
выдан:
опубликован: 10.10.2008
ГИДРОЭНЕРГОСТАНЦИЯ

Изобретение относится к энергетике и может быть использовано для повышения технического гидроэнергопотенциала при одновременной выработке электрической и тепловой энергии. Гидроэнергостанция содержит источник воды и водохранилище, сообщающееся, по меньшей мере, с одним водоводом, в нижней части которого установлена гидравлическая машина, соединенная с электрогенератором, выход которого соединен с электропотребителем, по меньшей мере, один вихревой теплогенератор, сообщенный своим входом с водохранилищем дополнительным водоводом, а выходом соединенный посредством обвязки и трубопровода с теплопотребителем. Водоводы снабжены устройствами регулирования расхода воды, подключенными к гидротурбине и теплогенератору. Гидроэнергостанция снабжена устройством сбора вод водосброса, выполненным с возможностью сообщения через него с водохранилищем в зоне уровня воды, а к обвязке подключен другой трубопровод, выход которого соединен с гидротермоаккумулятором, сообщенным с теплопотребителем. Гидроэнергостанция снабжена другим, по аналогии с дополнительным, водоводом сбросной линии с установленным в нем вторым вихревым теплогенератором, сообщенным своим входом с устройством сбора вод водосброса, а выходом - с обвязкой. Повышается технический гидроэнергопотенциал станции при работе ее в многоводные периоды. 1 з.п. ф-лы, 4 ил.

2329394
выдан:
опубликован: 20.07.2008
УСТРОЙСТВО ДЛЯ ОБЕСПЕЧЕНИЯ ОБЪЕКТА ТЕПЛОМ И ХОЛОДОМ (ВАРИАНТЫ)

Изобретение относится к области холодильно-нагревательной техники и может быть использовано для одновременного охлаждения и нагрева воздуха окружающей среды, используемого в промышленных объектах. Устройство содержит турбодетандер и многоступенчатый компрессор, соединенные линией высокого давления, которая включает водяной теплообменник и первый влагоотделитель, два рекуперативных теплообменника и второй влагоотделитель. Линия низкого давления соединяет турбодетандер с объектом. Заборное устройство и фильтр последовательно установлены на линии подачи воздуха, которая подсоединена к многоступенчатому компрессору. Одноступенчатый центробежный компрессор установлен на одном валу с турбодетандером. Дополнительный влагоотделитель установлен после первого рекуперативного теплообменника. Дополнительный теплообменник установлен на линии низкого давления таким образом, что одна его полость подсоединена ко входу второго рекуперативного теплообменника, а другая - к выходу из него. Участок линии низкого давления перед объектом выполнен в виде не менее одного трубопровода с электронагревателем для продукционного воздуха. Дополнительный контур подачи воздуха отведен от линии подачи воздуха перед многоступенчатым компрессором и подсоединен ко входу в одноступенчатый центробежный компрессор. Контур выдачи избыточного тепла подсоединен к выходу из одноступенчатого центробежного компрессора. Техническим результатом является повышение надежности и термодинамической эффективности устройства, а также улучшение условий его эксплуатации. 2 н. и 2 з.п. ф-лы, 2 ил.

2317492
выдан:
опубликован: 20.02.2008
Наверх