Теплообменные аппараты с промежуточным теплоносителем в закрытых трубах, проходящих внутри стенок или через стенки каналов: ..с устройствами управления – F28D 15/06

МПКРаздел FF28F28DF28D 15/00F28D 15/06
Раздел F МАШИНОСТРОЕНИЕ; ОСВЕЩЕНИЕ; ОТОПЛЕНИЕ; ДВИГАТЕЛИ И НАСОСЫ; ОРУЖИЕ И БОЕПРИПАСЫ; ВЗРЫВНЫЕ РАБОТЫ
F28 Теплообмен вообще
F28D Теплообменные аппараты, не отнесенные к другим подклассам, в которых теплоносители не вступают в непосредственный контакт друг с другом; установки или устройства для хранения тепла вообще
F28D 15/00 Теплообменные аппараты с промежуточным теплоносителем в закрытых трубах, проходящих внутри стенок или через стенки каналов
F28D 15/06 ..с устройствами управления

Патенты в данной категории

ТРУБА ТЕПЛОВАЯ САМОРЕГУЛИРУЮЩАЯСЯ

Изобретение относится к терморегулирующим устройствам, стабилизирующим заданную температуру объекта сплошной среды (жидкости, пара и др.), и может быть применено в энергосберегающих обогревателях. Устройство состоит из тепловой трубы (ТТ) и терморегулирующего блока, содержащего три сильфона: с неконденсирующимся газом («газовый сильфон»), «конденсатный» сильфон, обменивающийся конденсатом с ТТ и «автономный», предварительно заполненный специально подобранной жидкостью и загерметизированный. Сильфоны образуют систему сообщающихся сосудов: «тепловая труба - конденсатный сильфон - автономный сильфон». При нагреве (охлаждении) стабилизируемого объекта автономный сильфон деформируется, воздействуя на два других. В результате механического взаимодействия часть газа заполняет конденсатор ТТ, частично вытесняя из него рабочее тело в конденсатный сильфон, что снижает эффективную проводимость ТТ. При охлаждении действие сильфонов имеет обратную последовательность. Автономный сильфон заполняют жидкостью, у которой угол наклона кривой насыщения пара к температурной оси превышает аналогичную величину для жидкости в ТТ. Технический результат - осуществление регулирования «после себя» без специальных источников энергии и дополнительных устройств электрического или другого характера. 4 з.п. ф-лы, 2 ил.

2416065
патент выдан:
опубликован: 10.04.2011
ТЕПЛОВАЯ ТРУБА

Изобретение относится к области теплотехники и может быть использовано для охлаждения тепловыделяющих элементов компьютера. Тепловая труба состоит из тепловоспринимающих участков, контактирующих с источниками тепловой энергии, паровых трубопроводов, теплоотдающих участков, контактирующих с приемниками тепловой энергии, и жидкостных трубопроводов, образующих замкнутую систему, внутри которой находится рабочее тело в виде жидкости и ее паров. Жидкостный трубопровод имеет накопительно-вытеснительный участок, ограниченный устройством, допускающим движение рабочего тела в направлении от теплоотдающего участка к накопительно-вытеснительному участку и препятствующим движению рабочего тела в обратном направлении. Накопительно-вытеснительный участок ограничен также устройством, допускающим движение рабочего тела в направлении от накопительно-вытеснительного участка к тепловоспринимающему участку и препятствующим движению рабочего тела в обратном направлении. Накопительно-вытеснительный участок имеет ответвление, содержащее: испарительный участок, конденсационный участок и накопительно-вытеснительный участок, который либо снабжен устройством периодического нагрева и периодического охлаждения участка, либо имеет ответвление следующего уровня. Техническим результатом является обеспечение передачи тепловой энергии от источника к приемнику независимо от их взаиморасположения в поле силы тяжести. 9 з.п.ф-лы, 1 ил.

2361168
патент выдан:
опубликован: 10.07.2009
УНИВЕРСАЛЬНОЕ ОХЛАЖДАЮЩЕЕ УСТРОЙСТВО ДЛЯ АГРЕГАТОВ С БОЛЬШОЙ ТЕПЛОВОЙ МОЩНОСТЬЮ

Изобретение относится к теплообменным устройствам на основе тепловых труб, которые могут использоваться для охлаждения электронных устройств, электротехнических и энергетических агрегатов. Предлагаемое устройство содержит холодильный агрегат, жидкостный контур и нагреватель. Холодильный агрегат выполнен в виде множества фитильных тепловых труб, связанных между собой общим объемом в двухслойную тепловую панель-радиатор с пирамидальными выпукло-вогнутыми ячейками, расположенными в шахматном порядке. В его состав входит также термоэлектрический холодильник, жестко прикрепленный по всей поверхности к указанной панели-радиатору. Жидкостный контур содержит ветви контурных тепловых труб, присоединенных своими конденсаторными трубками к испарителям, а испарительными трубками - к конденсаторам тепловых труб указанной панели-радиатора. Предусмотрен гидроаккумулятор с теплоносителем, сообщенный с панелью-радиатором через трубку с фитилем. К его внешней поверхности прикреплен термоэлектрический нагреватель, снабженный системой термодатчиков охлаждаемого агрегата и его частей. Эти датчики соединены через электронные усилители системы управления с электропитанием нагревателя. Устройство может быть использовано для охлаждения как всего теплового агрегата, так и отдельных его блоков. Технический результат изобретения состоит в увеличении коэффициента теплопередачи, расширении диапазона допустимой тепловой мощности охлаждаемого агрегата и динамическом отслеживании ее изменения, а также в устранении шумов и вибраций при работе устройства. 3 ил.

2290584
патент выдан:
опубликован: 27.12.2006
СПОСОБ ТЕРМОРЕГУЛИРОВАНИЯ РАДИАЦИОННЫХ ПОВЕРХНОСТЕЙ КОСМИЧЕСКИХ АППАРАТОВ

Изобретение относится к средствам регулирования температур космических аппаратов и их частей. Предлагаемый способ включает измерение температур в зонах радиационных поверхностей (РП) системы терморегулирования, их сравнение с верхними и нижними предельными значениями и подвод тепла к РП при выходе температур на нижние значения. При этом определяют полетные интервалы, на которых потребляемая электроэнергия превышает генерируемую первичными бортовыми источниками. На этих же интервалах определяют количество электроэнергии, затраченной на терморегулирование РП. Определяют полетные интервалы для максимально возможного аккумулирования тепловой энергии на РП в указанных зонах в пределах допустимых температур. При этом учитывают затраты на терморегулирование РП. Перед началом интервалов полета с превышением потребляемой электроэнергии над генерируемой подводят тепло в зоны РП, требующих расхода электроэнергии на их терморегулирование на этих интервалах. При этом подвод тепла осуществляют с учетом верхних предельных значений температур. Технический результат изобретения состоит в снижении нагрузки на систему электроснабжения космического аппарата за счет уменьшения энергопотребления на терморегулирование РП при одновременном сохранении заданных температурных диапазонов на указанных поверхностях. 3 ил.

2262468
патент выдан:
опубликован: 20.10.2005
СПОСОБ КОНТРОЛЯ КАЧЕСТВА ТЕПЛОВОЙ ТРУБЫ

Использование: в теплотехнике для контроля качества тепловых труб. Сущность изобретения: способ контроля качества тепловой трубы осуществляют путем подвода тепла к одному из ее участков, измерения температуры на другом участке трубы и сравнения контрольного параметра с результатами расчета или измерений на эталонной трубе, при этом дополнительно одновременно с измерением температуры измеряют давление насыщенных паров теплоносителя, а в качестве контрольного параметра выбирают их отношение. 1 ил.
2088874
патент выдан:
опубликован: 27.08.1997
СПОСОБ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРНОГО УРОВНЯ КОНТУРНОЙ ТЕПЛОВОЙ ТРУБЫ

Использование: для термостабилизации различных теплонагруженных объектов. Сущность изобретения: регулирование тепловой трубы осуществляют путем управляемого теплового воздействия на теплоноситель в компенсационной полости. Воздействие осуществляют регулируемым по определенному закону нагревом или охлаждением теплоносителя. Мощность регулирующего воздействия можно определить по формуле: Qр = CpQ/L(Tкп2 - Ткп1), где Qр - мощность регулирующего теплового воздействия, Вт, Ср - теплоемкость жидкого теплоносителя, Дж/кг К, Q - тепловой поток, передаваемый тепловой трубой, Вт, L - скрытая теплота испарения теплоносителя, Дж/кг, Ткп1 - температура пара в компенсационной полости, реализующаяся при заданной температуре пара в зоне испарения тепловой трубы или нагреваемой стенки испарителя, К, Tкп2 - температура пара в компенсационной полости, реализующаяся при заданных условиях подвода и отвода тепла в испарителе и конденсаторе тепловой трубы, К, или задать автоматизированной системой с обратной связью по температуре пара в паропроводе или стенке испарителя.
2062970
патент выдан:
опубликован: 27.06.1996
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО

Использование: в теплотехнике, в аппаратах с промежуточным теплоносителем. Сущность изобретения; дополнительные резервные емкости выполнены в виде подъемников охлаждающей рубашки термосифона и резервной емкости и подсоединены к обратному клапану с калиброванным отверстием. Клапан соединяет термосифон и резервную емкость. Термосифон дополнительно снабжен обратным клапаном с калиброванным отверстием. Его выходной патрубок сообщают с атмосферой. Термосифон и резервная емкость жестко закреплены в охлаждающей рубашке. 1 ил.
2062422
патент выдан:
опубликован: 20.06.1996
КОНТУРНАЯ ТЕПЛОВАЯ ТРУБА

Использование: для автономного запуска контурной тепловой трубы при охлаждении конденсатора и постоянной температуре испарителя. Сущность изобретения: тепловая труба содержит соединенные паро- и конденсатопроводами конденсатор и расположенные в одном корпусе испаритель и компенсационную полость. Последняя содержит соединенный с компенсационной полостью теплообменник-охладитель. Он помещен в среду с температурой ниже температуры испарителя. Испаритель снабжен капиллярно-пористой насадкой. Компенсационная полость расположена со стороны конденсатопровода. 4 з. п. ф-лы, 4 ил.
2044983
патент выдан:
опубликован: 27.09.1995
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО

Использование: в области теплотехники. Сущность изобретения: устройство содержит испарительную и конденсаторную секции. Они соединены между собой паропроводом и конденсатопроводом. Отдельные испарители и конденсаторы объединены в своих секциях параллельно посредством паровых и жидкостных коллекторов. Испарители снабжены капиллярной структурой. Она образует с торцевой частью корпуса со стороны жидкостного коллектора внутеннюю полость. В месте сопряжения внешней поверхности капиллярной структуры с корпусом испарителя имеется система пароотводных каналов зоны испарения. Гидроаккамулятор с системой управления его температурой подсоединен трубопроводом, имеющим тепловой контакт с конденсатопроводом, к полостям испарителей через собственный коллектор. Трубопроводы от жидкостного коллектора введены в центральную часть внутренней полости испарителей. За счет организации циркуляции теплоносителя через полости испарителей при запуске и других переходных режимах работы устройства существенно снижается вероятность парообразования со стороны впитывающей поверхности капиллярной структуры и блокирования ее паром. 1 з.п. ф-лы, 2 ил.
2044247
патент выдан:
опубликован: 20.09.1995
Наверх