Аэродинамические испытания, устройства, связанные с аэродинамическими трубами: .аэродинамические трубы – G01M 9/02

МПКРаздел GG01G01MG01M 9/00G01M 9/02
Раздел G ФИЗИКА
G01 Измерение
G01M Проверка статической и динамической балансировки машин; испытания различных конструкций или устройств, не отнесенные к другим подклассам
G01M 9/00 Аэродинамические испытания; устройства, связанные с аэродинамическими трубами
G01M 9/02 .аэродинамические трубы

Патенты в данной категории

АЭРОДИНАМИЧЕСКАЯ ТРУБА

Изобретение относится к экспериментальной аэродинамике, в частности к аэродинамическим установкам (трубам), и может быть использовано для испытаний моделей лопастей воздушных винтов. Устройство содержит входной тракт с задвижкой и дросселем для ввода сжатого воздуха, форкамеру, пульсатор, сопло, рабочую часть, устройство изменения углового положения модели профиля сечения лопасти винта и проведения весовых измерений, выхлопной тракт, рабочую камеру. В форкамере установлены два дросселя, один из которых выполняет роль пульсатора, а другой предназначен для регулирования стационарной составляющей расхода воздуха. Оба дросселя изготовлены в виде двух расположенных соосно перфорированных цилиндров, причем внешние цилиндры неподвижны, внутренний цилиндр пульсатора выполнен с возможностью совершать вращательные и возвратно-поступательные перемещения, а внутренний цилиндр дросселя регулирования стационарной составляющей расхода воздуха выполнен с возможностью совершать только возвратно-поступательные перемещения вдоль оси. Стенки рабочей части аэродинамической трубы выполнены перфорированными. Устройство изменения углового положения модели выполнено в виде отсека рабочей части аэродинамической трубы, на боковых стенках отсека которого расположены тензовесы и устройство изменения углового положения, содержащее механизм синхронизации углового положения модели с пульсациями скорости потока в рабочей части. Технический результат заключается в повышении качества моделирования натурного обтекания профиля сечения лопасти воздушного винта. 3 ил.

2526515
патент выдан:
опубликован: 20.08.2014
СПОСОБ СОЗДАНИЯ ПОТОКА ГАЗА В ГИПЕРЗВУКОВОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЕ И АЭРОДИНАМИЧЕСКАЯ ТРУБА

Группа изобретений относится к гиперзвуковым аэродинамическим трубам (АДТ). Способ включает генерацию газа высокого давления из жидкого газа путем его газификации, регулирование давления и нагрев газа, охлаждение стенок сопла, рабочей части и диффузора, охлаждение рабочего газа в газоохладителе, создание разрежения в вакуумной камере, откачку газа из вакуумной камеры производят с помощью ККН, вымораживая рабочий газ на криопанелях в твердую фазу. При превышении предельной толщины слоя конденсата производят регенерацию криопанелей, напуская осушенный атмосферный воздух в изолированную полость ККН, полученный в результате регенерации сжиженный газ откачивают для хранения в резервуаре и газифицируют с целью поддержания требуемого давления в резервуаре газа высокого давления за счет энергии осушенного атмосферного воздуха. Для охлаждения рабочего газа в газоохладителе используют сжиженный газ, а полученный газ высокой температуры и давления направляют в резервуар газа высокого давления и (или) используют в газификаторе. В устройстве для откачки вакуумной камеры используются ККН, в которых газ не выбрасывается из вакуумируемой полости, а конденсируется в твердую фазу на предварительно охлажденных до Т=10÷25 K криопанелях. Для улучшения характеристик существующих ККН предлагается использовать импульсный режим их работы, а криопанели выполнять из пористого металла с открытой системой пор. Технический результат заключается в увеличении расхода откачиваемого газа, снижении энергозатрат на получение газа высокого давления на газификацию жидкого газа, нагреве и охлаждении рабочего газа, увеличении времени работы АДТ, уменьшении ее габаритов. 2 н. и 2 з.п. ф-лы, 1 ил.

2526505
патент выдан:
опубликован: 20.08.2014
СИМУЛЯТОР СВОБОДНОГО ПАДЕНИЯ (ВАРИАНТЫ) И ВЕНТИЛЯЦИОННОЕ УСТРОЙСТВО ДЛЯ НЕГО

Симулятор свободного падения с замкнутой циркуляцией воздуха включает в себя камеру парения, в которой люди могут парить вследствие направленного вертикально вверх воздушного потока, с нижним отверстием на нижнем конце и верхним отверстием на верхнем конце, замкнутый воздухопровод с нагнетателем, который соединяет нижнее отверстие и верхнее отверстие камеры парения, отверстие впуска воздуха и отверстие выпуска воздуха для обмена воздуха внутри воздухопровода, отклоняющие устройства, отклоняющие пластины, которые изменяют направление воздушного потока внутри воздухопровода в угловых зонах и в зонах малого радиуса изгиба. Отверстие выпуска воздуха расположено внутри отклоняющего устройства. Вентиляционное устройство включает аэродинамическую трубу и отклоняющее устройство. Группа изобретений направлена на повышение эффективности регулирования температуры. 4 н. и 22 з.п. ф-лы, 8 ил.

2516947
патент выдан:
опубликован: 20.05.2014
СПОСОБ СОЗДАНИЯ ПОТОКА ГАЗА В ГИПЕРЗВУКОВОЙ ВАКУУМНОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЕ И АЭРОДИНАМИЧЕСКАЯ ТРУБА

Изобретения относятся к области промышленной аэродинамики, в частности к гиперзвуковым аэродинамическим трубам (АДТ). Предложены способ создания потока и аэродинамическая труба (АДТ) непрерывного действия, охватывающая весь гиперзвуковой диапазон скоростей с числами Маха М 5, причем для создания газа высокого давления вместо многоступенчатых компрессоров используется сжиженный газ. Способ включает создание разрежения в вакуумной камере, генерацию газа высокого давления и регулирование его давления, нагрев газа, откачку газа из вакуумной камеры производят с помощью крионасосов, газ из вакуумной камеры вымораживают на криопанелях в твердую фазу, а регенерацию криопанелей производят, напуская в изолированную полость крионасоса газ более высокого давления и температуры. Полученный в результате регенерации сжиженный газ направляют в резервуар для хранения сжиженного газа, который по мере необходимости превращают в газ высокого давления и направляют в резервуар для хранения газа высокого давления и используют в системах генерации, регулирования давления и нагрева газа. Устройство содержит источник газа высокого давления с системой регулирования давления, подогреватель газа, гиперзвуковое сопло, рабочую часть, диффузор, систему охлаждения газа после прохождения рабочей части, вакуумную камеру, насосы предварительной и окончательной откачки газа из вакуумной камеры. Для откачки вакуумной камеры используются крионасосы, в которых газ не выбрасывается из вакуумируемой полости, а конденсируется в твердую фазу на предварительно охлажденных криопанелях. Крионапели выполнены из пористого металла с открытой системой пор. Импульсный режим работы крионасосов, т.е. предварительное замораживание криопанелей перед началом работы и в перерывах между пусками, и пористые криопанели позволяют "утилизировать" практически любой расход газа через гиперзвуковое сопло. Внешняя поверхность гиперзвукового сопла внутри рабочей части аэродинамической трубы снабжена змеевиками для охлаждения стенок сопла, причем система охлаждения высокотемпературного газа, поступающего из рабочей части, размещена внутри вакуумной камеры. Кроме того, аэродинамическая труба содержит резервуар жидкого газа с насосом для перекачки и детандерно-генераторные агрегаты для получения электроэнергии. Технический результат заключается в увеличении скорости откачки газа, снижение энергозатрат на получение газа высокого давления, увеличение времени работы АДТ, увеличение масштаба исследуемых моделей при неизменных геометрических параметрах выходного сечения сопла. 2 н.п. ф-лы, 1 ил.

2482457
патент выдан:
опубликован: 20.05.2013
АЭРОДИНАМИЧЕСКАЯ ТРУБА С РАБОЧЕЙ ЧАСТЬЮ ОТКРЫТОГО ТИПА ДЛЯ КЛАССИЧЕСКИХ И ВЕТРОВЫХ ИССЛЕДОВАНИЙ

Изобретение относится к области приборостроения и может быть широко использовано для решения разных задач экспериментальной аэродинамики, в частности для экспериментальных диагностических измерений параметров газового потока. Устройство содержит форкамеру и сопло подводящего канала, диффузор и рабочую часть. Рабочая часть снабжена дополнительно поворотным столом, установленным в нижней горизонтальной плоскости вне зоны воздушного потока, который имеет автономный механизм управления, жестко связанную с поворотным столом трехкоординатную траверсу, которая имеет автономный механизм управления, и поворотным кругом для размещения исследуемых моделей, который установлен в зоне рабочей части аэродинамической трубы и имеет автономный механизм управления. При этом плоский экран рабочей части выполнен протяженным, имеющим длину, соизмеримую с размером, определяемым расстоянием со стороны края экрана, до края у начала диффузора, а плоский экран выполнен со сквозным отверстием и жестко связан вне зоны рабочего потока с торцом фланца сопла аэродинамической трубы, вертикальными стойками и горизонтальными перекладинами, расположенными вне зоны воздушного потока. Технический результат заключается в упрощении измерений, расширении возможностей экспериментальных методов диагностики аэродинамических потоков в аэродинамических трубах, расширении возможностей моделирования пограничного (ветрового) слоя атмосферы и проведения модельных метеорологических исследований в аэродинамических трубах с рабочей частью открытого типа. 4 з.п. ф-лы, 1 ил.

2462695
патент выдан:
опубликован: 27.09.2012
СПОСОБ СОЗДАНИЯ ПОТОКА ГАЗА В РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ И АЭРОДИНАМИЧЕСКАЯ ТРУБА

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам (АДТ) криогенного типа. Предложен способ создания потока в рабочей части АДТ и аэродинамическая труба, в которой компрессор вращается с помощью струй жидкого газа и (или) полученного из конденсата холодного газа высокого давления, истекающих из реактивных сопел, установленных на роторе компрессора, и (или) из полых лопастей компрессора, что позволяет по сравнению с аналогами существенно понизить температуру газа после компрессора. Избыточный газ из тракта АДТ сначала направляется в детандерно-генераторный агрегат (ДГА), где вырабатывается электроэнергия и газ охлаждается при его расширении в турбине, а далее газ еще раз охлаждается при втекании в вакуумную камеру и сжижается на установленных в ней криопанелях, предварительно (между пусками в АДТ) охлаждаемых холодильной машиной до температур ниже температуры конденсации используемого газа. Криопанели выполнены из пористых металлов и имеют площадь пор на единицу массы, на два-три порядка большую по сравнению с площадью криопанели из сплошного металла. Интенсивность сжижения пропорциональна площади контакта газа с поверхностью охлажденной криопанели, поэтому небольшая холодильная установка может экономно сжижать большие порции газа за короткое время. Сжиженный газ собирается в резервуаре и используется для вращения компрессора. Технический результат заключается в уменьшении потерь энергии при создании потока газа, повышении равномерности потока в рабочей части. 2 н. и 3 з.п. ф-лы, 4 ил.

2451274
патент выдан:
опубликован: 20.05.2012
ИМПУЛЬСНАЯ АЭРОДИНАМИЧЕСКАЯ ТРУБА

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень, образующий дифференциальный мультипликатор, надпоршневое пространство которого соединено с источником толкающего газа, а подпоршневое заполнено демпфирующей жидкостью и соединено с дренированной емкостью. Также труба снабжена компенсатором динамической составляющей мультипликатора, быстродействующим клапаном запуска системы стабилизации, контактирующим через поршень мультипликатора с полостью форкамеры. Корпус мультипликатора выполнен с возможностью разъема и при этом его надпоршневое пространство связано с ресивером толкающего газа через быстродействующий клапан запуска системы стабилизации, а подпоршневое пространство через гидравлический канал с регулируемой длиной с подпоршневым пространством компенсатора динамической составляющей мультипликатора. Форкамера снабжена стыковочным узлом и обратным клапаном для подключения соответственно импульсного высокоэнтальпийного адиабатического генератора и блока подачи смеси реагирующих газов и содержит устройство принудительного вскрытия диафрагмы, размещенное на выходе из форкамеры. Технический результат заключается в расширении экспериментальных возможностей аэродинамической трубы. 4 з.п. ф-лы, 3 ил.

2439523
патент выдан:
опубликован: 10.01.2012
АЭРОДИНАМИЧЕСКАЯ ТРУБА

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Устройство содержит установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления, поршни которых выполнены ступенчатыми и установлены с возможностью перемещения навстречу друг другу, систему гидравлической синхронизации движения поршней, ресивер и расположенный перпендикулярно к форкамере газодинамический тракт. При этом надпоршневое пространство первого мультипликатора соединено с источником толкающего газа через быстродействующий клапан, а его подпоршневое пространство заполнено демпфирующей жидкостью и связано гидравлическим каналом с надпоршневым пространством второго мультипликатора, при этом для обеспечения синхронизации их движения большие ступени поршней мультипликаторов выполнены разновеликими, так что второй мультипликатор имеет диаметр большой ступени поршня меньше диаметра большой ступени поршня первого мультипликатора. Технический результат заключается в расширении функциональных возможностей аэродинамической трубы кратковременного действия. 1 ил.

2436058
патент выдан:
опубликован: 10.12.2011
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ШТОПОРА МОДЕЛИ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретения относятся к экспериментальной аэродинамике, в частности к определению характеристик штопора геометрически и динамически подобной свободно летающей модели летательного аппарата (ЛА) в воздушном потоке вертикальной аэродинамической трубы. Способ заключается в запуске в поток вертикальной аэродинамической трубы, геометрически и динамически подобной свободно штопорящей модели летательного аппарата, определении момента взвешивания модели в потоке, определении зависимости по времени динамических характеристик модели летательного аппарата и отклонения каждого из рулей на углы, выведении модели из потока. При этом снабжают модель летательного аппарата установленным внутри бесплатформенным инерциальным измерительным устройством, системой управления отклонением рулей модели и измерения их положения, сигналы от которых по линиям связи передаются в управляющий вычислительный модуль. Перед началом испытаний устанавливают модель на опорный координатный стол, задающий начальное положение модели относительно рабочей части аэродинамической трубы. Затем включают периодическую регистрацию в память управляющего вычислительного модуля положения рулей и пространственного положения модели и выполняют автоматически в течение полета с помощью управляющего вычислительного модуля любой заданный алгоритм управления полетом. Считывают после завершения полета полученные характеристики штопора модели летательного аппарата, рассчитывают и строят полученные характеристики штопора. Технический результат заключается в расширении возможностей определения всех динамических характеристик штопора модели ЛА и методов вывода из него, повышении достоверности моделирования законов управления в штопоре, повышении оперативности в определении характеристик штопора и производительности работы аэродинамической трубы, а также в повышении точности определения характеристик штопора и методов вывода из него. 2 н. и 5 з.п. ф-лы, 4 ил.

2410659
патент выдан:
опубликован: 27.01.2011
СПОСОБ УСТАНОВКИ И ОРИЕНТАЦИИ МОДЕЛИ В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ)

Изобретение относится к экспериментальной аэрогазодинамике, в частности к средствам для установки и перемещения моделей различных летательных аппаратов в рабочих частях аэродинамических труб с высокими значениями скоростных напоров. Способ реализуется за счет того, что испытуемую модель устанавливают на направляющих с возможностью перемещения под действием чрезмерной нерасчетной нагрузки с помощью обтекаемой стойки и хомутов, охватывающих направляющие с усилием, которое задают и изменяют с помощью динамометрических болтов. При этом в исходном положении и при действии расчетных нагрузок обеспечивают неподвижное положение модели на направляющих. Дополнительно регулируют скорость перемещения модели по направляющим с помощью двухполостного пневмогидроцилиндра путем изменения давления газа и его дросселирования через клапан, проходное сечение которого изменяют. Технический результат заключается в предотвращении возможности разрушения моделей и повреждения подвесок и измерительных средств от чрезмерных нагрузок при запуске аэродинамической трубы или установок. 3 н. и 6 з.п. ф-лы, 5 ил.

2396532
патент выдан:
опубликован: 10.08.2010
РАБОЧАЯ ЧАСТЬ ТРАНСЗВУКОВОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ (ВАРИАНТЫ)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, предлагается сделать в поперечной стойке отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В результате отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам течет в зону за поперечной стойкой. В другом варианте изобретения ниже по потоку от поперечной стойки установлены трубопроводы, имеющие отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В обоих вариантах камера давления и каналы поперечной стойки или трубопроводы могут быть соединены через вентиляторы. Технический результат заключается в снижении энергозатрат и расширении диапазона чисел Маха при проведении испытаний. 2 н. и 2 з.п. ф-лы, 3 ил.

2393449
патент выдан:
опубликован: 27.06.2010
АЭРОДИНАМИЧЕСКАЯ ТРУБА ДЛЯ ПОДГОТОВКИ ПАРАШЮТИСТОВ

Изобретение относится к тренажерам и может быть использовано в качестве тренажера для подготовки парашютистов и развлекательных целей. Устройство содержит канал, который образуют последовательно установленные и соединенные между собой: входной конфузор, первая рабочая зона, промежуточный конфузор, вторая рабочая зона. Рабочие зоны выполнены диффузорными, причем с различным продольным градиентом скорости потока, при этом рабочая зона с меньшим продольным градиентом скорости имеет меньшую длину, а рабочая зона с большим продольным градиентом скорости имеет большую длину. Между рабочими зонами установлен хонейкомб. На входе и выходе из рабочих зон установлены предохранительные сетки. Технический результат заключается в возможности улучшить качество тренировок парашютистов. 5 з.п. ф-лы, 1 ил.

2389528
патент выдан:
опубликован: 20.05.2010
СПОСОБ ИСПЫТАНИЙ ПУЛЬСИРУЮЩЕГО ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ И АЭРОДИНАМИЧЕСКАЯ УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретения относятся к транспортному машиностроению, в частности к авиадвигателестроению, и могут быть использованы для наземных испытаний и исследования характеристик пульсирующего детонационного двигателя. Способ заключается в создании в аэродинамической трубе условий на входе в пульсирующий детонационный двигатель, соответствующих взаимодействию его с высокоскоростным потоком воздуха, организации топливопитания детонационной камеры сгорания и последующем измерении возникающих сил и моментов при работе двигателя шестикомпонентными тензовесами для определения тяги. Устройство включает закрытую рабочую часть аэродинамической трубы, сменную форкамеру, электроподогреватель, сверхзвуковое сопло, сверхзвуковой диффузор, эжектор, выхлопной диффузор и средства управления и измерений. При этом в закрытую рабочую часть аэродинамической трубы установлен пульсирующий детонационный двигатель с необходимым для испытаний запасом топлива, соединенный с тягоизмерительным устройством, выполненным в виде закрытой обтекателем весовой державки с шестикомпонентными охлаждаемыми тензовесами. Для подачи топливной смеси между воздухозаборником и детонационной камерой сгорания установлено кольцевое сопло. Технический результат заключается в возможности прямого измерения аэродинамических характеристик и тяги пульсирующего детонационного двигателя при воспроизведении и/или моделировании условий полета. 2 н. и 2 з.п. ф-лы, 2 ил.

2381472
патент выдан:
опубликован: 10.02.2010
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ТЯГОВЫХ ХАРАКТЕРИСТИК ИМИТАТОРОВ ВОЗДУШНО-РЕАКТИВНЫХ ДВИГАТЕЛЕЙ (ВРД), СПОСОБ ОПРЕДЕЛЕНИЯ ТЯГОВЫХ ХАРАКТЕРИСТИК ИМИТАТОРОВ ВРД И СПОСОБ КОНТРОЛЯ ДОСТОВЕРНОСТИ ОПРЕДЕЛЕНИЯ ТЯГОВЫХ ХАРАКТЕРИСТИК ИМИТАТОРОВ ВРД

Изобретения относятся к экспериментальной аэродинамике и могут быть использованы для аэродинамических испытаний моделей летательный аппаратов. Устройство содержит имитатор двигателя с воздухозаборником, проточным каналом и эжектором, установленный на державке весов сверхзвуковой аэродинамической трубы, содержащей систему подвода рабочего тела в эжектор. Державка снабжена поддерживающим пилоном с экраном, на котором установлен имитатор ВРД. Способ определения эффективных тяговых характеристик имитаторов ВРД включает установку устройства с имитатором в аэродинамической трубе, обдув сверхзвуковым потоком и измерение тяговых характеристик с помощью аэродинамических весов. Характеристики устройства измеряют дважды: с установкой на экране имитатора ВРД и подводом струй рабочего тела к эжектору, то есть с тягой, и без имитатора, затем вычисляют разности полученных характеристик, которые представляют собой эффективные тяговые характеристики имитатора ВРД. Способ контроля достоверности определения эффективных тяговых характеристик имитатора ВРД включает установку устройства с имитатором в аэродинамической трубе, обдув сверхзвуковым потоком и измерение тяговых и моментных характеристик с помощью аэродинамических весов. Характеристики устройства измеряют дважды: с установкой на экране имитатора ВРД и подводом рабочего тела к эжектору, то есть с тягой, и без подвода рабочего тела, то есть без тяги, затем вычисляют разности характеристик, полученная величина является аналогом внутренней тяги и момента тяги, по которым определяют плечо действия силы тяги, которое должно быть равно расстоянию от оси державки до точки, лежащей в пределах габаритной высоты проточного канала имитатора ВРД. Технический результат заключается в создании устройства для определения эффективных тяговых характеристик имитаторов ВРД. 3 н.п. ф-лы, 4 ил.

2381471
патент выдан:
опубликован: 10.02.2010
АЭРОДИНАМИЧЕСКАЯ ТРУБА

Изобретение относится к области аэродинамики и может быть использовано для аэродинамических исследований, подготовки спортсменов-парашютистов и других целей. Устройство содержит конфузор, рабочую зону, диффузор, один или несколько обратных каналов, вентиляторную установку и поворотные колена с неодинаковыми углами поворота потока. Причем колено с меньшим углом поворота потока расположено в сечении, где скорость потока больше, а колено с большим углом поворота потока расположено в сечении, где скорость потока меньше. Технический результат заключается в уменьшении гидравлических потерь, уменьшении мощности привода и металлоемкости конструкции. 1 з.п. ф-лы, 1 ил.

2377525
патент выдан:
опубликован: 27.12.2009
АЭРОДИНАМИЧЕСКАЯ ТРУБА

Изобретение относится к аэродинамическим трубам и может быть использовано для проведения различных испытаний моделей летательных аппаратов, моделей несущих и рулевых винтов; парашютных систем и тренировки парашютистов в условиях, соответствующих условиям свободного падения в атмосфере. Труба содержит открытую вертикальную рабочую часть, страховочную сетку, обратный канал с расположенными в нем главным вентилятором, каналами вдува охлаждающего атмосферного воздуха, хонейкомбом и соплом, и предохранительную сетку. При этом главный вентилятор расположен горизонтально на уровне поверхности земли между третьим и четвертым поворотными коленами трубы. Технический результат заключается в упрощении монтажа и обслуживания главного вентилятора без ухудшения качества потока в рабочей части трубы, а также обеспечении длительной работы трубы при максимальной мощности, потребляемой вентилятором. 1 ил.

2349889
патент выдан:
опубликован: 20.03.2009
СПОСОБ ПОЛУЧЕНИЯ ГИПЕРЗВУКОВОГО ПОТОКА ДЛЯ АЭРОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвуковых потоков газа для аэродинамических исследований. Способ основан на разогреве сжатого рабочего газа с помощью кауперного подогревателя с последующим выпуском его через аэродинамическое сопло. При этом разогрев газа производят до температуры, которая превышает требуемую температуру торможения потока, а затем к разогретому газу перед подачей его в сопло подмешивают холодный газ в пропорции, при которой в ядре потока после сопла обеспечиваются параметры торможения. Устройство содержит кауперный подогреватель рабочего газа, пусковое устройство, аэродинамическое сопло и источник рабочего газа. Дополнительно оно снабжено камерой смешения горячего и холодного газов, установленной между подогревателем газа и пусковым устройством, либо снабжено дополнительным кауперным подогревателем, вспомогательным подогревателем газа и камерой смешения. При этом дополнительный кауперный подогреватель и камера смешения установлены последовательно между кауперным подогревателем и пусковым устройством, а вспомогательный подогреватель установлен параллельно с кауперным подогревателем между источником рабочего газа и дополнительным кауперным подогревателем. Также устройство может быть снабжено дополнительным кауперным подогревателем, вспомогательным подогревателем и камерой смешения, при этом дополнительный кауперный подогреватель и камера смешения установлены последовательно между кауперным подогревателем и пусковым устройством, а вспомогательный подогреватель подключен к выходу дополнительного кауперного подогревателя. Технический результат заключается в расширении области с большими числами Рейнольдса Re в сторону уменьшения чисел М гиперзвукового потока при работе в аэродинамических трубах кратковременного действия. 4 н.п. ф-лы, 3 ил.

2326360
патент выдан:
опубликован: 10.06.2008
АЭРОДИНАМИЧЕСКАЯ УСТАНОВКА-ТРУБА

Изобретение относится к области экспериментальной аэродинамики, в частности к классу аэродинамических труб, и может быть использовано для получения низкотурбулентного потока воздуха при проведении наземных испытаний объектов авиационной техники. Устройство содержит форкамеру с элементами для повышения качества потока, коллектор-сопло, систему слива, рабочую часть и нагреватели. По первому варианту отличительной особенностью устройства является наличие двух ступеней поджатия потока в коллекторе, разделенных промежуточным отсеком, снабженным системой отсоса-слива части потока, и нагревателей стенки отсека, размещенных по периметру отсека с внешней стороны аэродинамического контура. Во втором варианте исполнения устройства вторая ступень поджатия переходит в рабочую часть непосредственно после критического сечения, труба дополнена опорами и контрольными средствами для ее вертикального расположения. Технический результат заключается в повышении устойчивости ламинарного пограничного слоя и способствует затягиванию ламинарно-турбулентного перехода и тем самым обеспечивает снижение уровня турбулентности потока внутри трубы. 1 з.п. ф-лы, 2 ил.

2310179
патент выдан:
опубликован: 10.11.2007
СПОСОБ ПОЛУЧЕНИЯ ГИПЕРЗВУКОВОГО ПОТОКА ДЛЯ АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)

Изобретения относятся к области экспериментальной аэродинамики и могут быть использованы при исследовании характеристик летательных аппаратов. Разогрев рабочего газа в замкнутом объеме производят с помощью кауперного подогревателя газа, после чего выталкивают его при постоянных параметрах торможения через аэродинамическое сопло. Рабочий газ поступает из малого цилиндра мультипликатора. Устройство содержит мультипликатор давления, кауперный подогреватель газа, пусковое устройство и аэродинамическое сопло. При этом кауперный подогреватель газа установлен между мультипликатором давления и пусковым устройством. В вариантах устройства оно может быть снабжено дросселем, установленным между кауперным подогревателем газа и пусковым устройством; клапаном и дросселем, последовательно установленным между мультипликатором давления и кауперным подогревателем газа; клапаном и двумя дросселями, причем клапан и один дроссель установлены между мультипликатором давления и кауперным подогревателем газа, а другой дроссель - между кауперным подогревателем и пусковым устройством. Технический результат заключается в увеличении более чем на порядок исходного запаса рабочего газа, увеличении продолжительности рабочего режима или диаметра рабочего потока, а также упрощении устройства и снижения загрязнения рабочего газа. 2 н. и 3 з.п. ф-лы, 4 ил.

2270430
патент выдан:
опубликован: 20.02.2006
СПОСОБ ПОЛУЧЕНИЯ ГИПЕРЗВУКОВОГО ПОТОКА ДЛЯ АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)

Изобретения относятся к области экспериментальной аэродинамики и могут быть использованы при исследовании характеристик летательных аппаратов. Разогрев рабочего газа в замкнутом объеме производят с помощью резистивного нагревателя, после чего выталкивают его при постоянных параметрах торможения через аэродинамическое сопло. Устройство содержит мультипликатор давления с нагревателем в малом цилиндре, пусковое устройство и аэродинамическое сопло. В малом цилиндре мультипликатора размещены элементы тепловой защиты деталей мультипликатора. Нагреватель выполнен в виде резистивного элемента. В вариантах устройства между мультипликатором давления и пусковым устройством установлен дроссель. Технический результат заключается в увеличении более чем на порядок исходного запаса рабочего газа, увеличении продолжительности рабочего режима или диаметра рабочего потока, а также упрощении устройства и снижении загрязнения рабочего газа. 2 н. и 1 з.п. ф-лы, 2 ил.

2270429
патент выдан:
опубликован: 20.02.2006
АЭРОДИНАМИЧЕСКАЯ ТРУБА

Изобретение относится к экспериментальной технике для аэродинамических исследований летательных аппаратов при больших числах Рейнольдса и гиперзвуковых числах Маха. Аэродинамическая труба имеет форкамеру, сопло и систему газообеспечения. Она снабжена левым и правым мультипликаторами давления, установленными симметрично с образованием общей форкамеры. Поршни левого и правого мультипликаторов давления установлены с возможностью перемещения навстречу друг другу. Аэродинамическая труба имеет систему гидравлической синхронизации движения этих поршней. Система синхронизации выполнена в виде сдвоенного мультипликатора с двумя ступенчатыми поршнями. Ступенчатые поршни установлены с возможностью перемещения в противоположные стороны и эти ступенчатые поршни образуют полости с общей камерой между ними. Полости, образованные ступеньками каждого поршня сдвоенного мультипликатора, выполнены с равными поперечными сечениями. Одна из полостей соединена трубопроводом с левым мультипликатором, а другая из них - с правым. Технический результат реализации изобретения заключается в расширении экспериментальных возможностей аэродинамической трубы путем увеличения ее предельных температур, чисел Рейнольдса или продолжительности испытаний. 1 ил.
2166186
патент выдан:
опубликован: 27.04.2001
СПОСОБ УМЕНЬШЕНИЯ ТОЛЩИНЫ ПОГРАНИЧНОГО СЛОЯ ГАЗА НА ОБТЕКАЕМОЙ ПОВЕРХНОСТИ

Использование: экспериментальная аэродинамика, преимущественно вакуумные аэродинамические установки. Сущность изобретения: обтекаемую поверхность (исследуемую модель и/или аэродинамическое сопло) охлаждают до температур, при которых пограничный слой газа переходит в конденсированное состояние. 1 ил.
2103667
патент выдан:
опубликован: 27.01.1998
ТАРИРОВОЧНЫЙ СТЕНД ИМИТАТОРОВ ВОЗДУШНО-РЕАКТИВНЫХ ДВИГАТЕЛЕЙ

Изобретение относится к экспериментальной аэродинамике, в частности к установкам для исследования моделей имитаторов воздушно-реактивных двигателей. Цель - приближение к натуральным условиям испытаний. Тарировочный стенд имитатора 4 воздушно-реактивного двигателя содержит внешнюю 1 и внутреннюю 2 оболочки вакуумной камеры, имеющие общую переднюю стенку 3, отражатель 5, сетки 6, трубки Вентури 7, сильфон 8, весы 9, приемники 10 давлений и выход 11 камеры 1. 2 ил.
2009457
патент выдан:
опубликован: 15.03.1994
Наверх