Электролитические конденсаторы, выпрямители, детекторы, переключающие устройства, светочувствительные или термочувствительные устройства, способы их изготовления: ....с использованием в качестве основного материала алюминия – H01G 9/045

МПКРаздел HH01H01GH01G 9/00H01G 9/045
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01G Конденсаторы; конденсаторы, выпрямители тока, детекторы, переключатели, светочувствительные или термочувствительные устройства электролитического типа
H01G 9/00 Электролитические конденсаторы, выпрямители, детекторы; переключающие устройства, светочувствительные или термочувствительные устройства; способы их изготовления
H01G 9/045 ....с использованием в качестве основного материала алюминия

Патенты в данной категории

НАНОСТРУКТУРНЫЙ ЭЛЕКТРОД ДЛЯ ПСЕВДОЕМКОСТНОГО НАКОПЛЕНИЯ ЭНЕРГИИ

Предложена нанопористая матричная структура, представляющая собой подложку из анодированного оксида алюминия (АОА), которую используют для создания псевдоконденсатора с высокой плотностью накапливаемой энергии. Псевдоемкостный материал конформно осаждают по боковым стенкам подложки АОА путем атомно-слоевого осаждения, химического осаждения из паровой фазы и/или электрохимического осаждения с использованием слоя зародышеобразования. Толщина псевдоемкостного материала на стенках может точно регулироваться в процессе осаждения. АОА подвергают травлению, чтобы сформировать массив цилиндрических и структурно устойчивых нанотрубок из псевдоемкостного материала с выполненными в них полостями. Поскольку подложку из АОА, которая действует как несущий каркас, удаляют, и остается только активный псевдоемкостный материал, тем самым доводится до максимума энергия на единицу массы. Кроме того, нанотрубки могут быть отделены от подложки, и для получения электрода псевдоконденсатора на проводящую подложку могут быть осаждены свободно располагающиеся нанотрубки с рандомизированой ориентацией. 2 н. и 22 з.п. ф-лы, 20 ил.

2521083
патент выдан:
опубликован: 27.06.2014
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ФОЛЬГИ И КАТОДНАЯ ФОЛЬГА ЭЛЕКТРОЛИТИЧЕСКИХ КОНДЕНСАТОРОВ

Способ получения катодной фольги включает в себя нанесение в вакуумной камере непосредственно на обе стороны алюминиевой основы пористого слоя вентильного металла методом электронно-лучевого испарения при непрерывном перемещении алюминиевой основы над испарителем в реактивной атмосфере смеси газов. Испарение проводят одновременно из, по меньшей мере, двух испарителей, а конденсация пористого слоя происходит при комбинированной подаче технологических газов в зону конденсации по каналам постоянного расхода и подачи газов в объем вакуумной камеры по каналу стабилизации вакуума. Пористый слой наносят на алюминиевую основу без нанесения промежуточного слоя, при этом конденсацию пористого слоя ведут при подаче в зону конденсации по каналам постоянного расхода смеси технологических газов, представляющей собой смесь азота и кислорода, причем расход смеси технологических газов устанавливается в пределах (10÷50)×10 -6 м3/с. Содержание кислорода в смеси газов устанавливается в пределах от 20 до 80% от общего состава смеси, а азота в пределах от 80 до 20%. В объем вакуумной камеры по каналу стабилизации вакуума осуществляется подача нейтрального газа, например аргона. Катодная фольга содержит алюминиевую основу толщиной 7-30 мкм, с обеих сторон которой нанесен пористый слой, включающий кристаллиты и блоки кристаллитов, разделенных порами в виде разветвленной сети каналов, представляющий собой твердый раствор «металлический титан-нитрид титана-оксид титана». Содержание металлического титана устанавливается в количестве от 25 до 35%, оксида титана - от 30 до 40% и нитрида титана - от 30 до 40% от общего состава покрытия. Покрытие имеет столбчатую структуру в виде плотно сомкнутых волокон, поверхность покрытия имеет холмообразный рельеф, причем каждый из холмов является окончанием волокна. Покрытие имеет развитую открытую пористость, установленную в пределах от 40 до 60%. Толщина пористого слоя составляет 0,3÷1,5 мкм, а кристаллиты и блоки кристаллитов имеют гранулированную структуру и вытянуты перпендикулярно поверхности алюминиевой основы. Катодная фольга обладает электростатической емкостью в пределах 400÷3000 мкФ/см. Получение холмообразного рельефа катодной фольги с развитой открытой поверхностью позволяет обеспечить контакт с электролитом по всей поверхности покрытия, что позволяет повысить надежность электролитического конденсатора в период его эксплуатации. 2 н. и 5 з.п. ф-лы, 4 ил., 2 табл.

2400851
патент выдан:
опубликован: 27.09.2010
СПОСОБ ПОЛУЧЕНИЯ АНОДНОЙ ФОЛЬГИ

Изобретение относится к области электротехники, в частности к способам изготовления анодной фольги, которая может быть использована в твердых электролитических конденсаторах с электролитом из проводящего полимера. Способ включает нанесение в вакуумной камере на обе стороны алюминиевой фольги пористого слоя нитрида вентильного металла и последующее окисление полученного слоя в вакуумной камере при непрерывном перемещении алюминиевой фольги. При этом нанесение слоя нитрида вентильного металла осуществляют путем электронно-лучевого испарения металла в атмосфере азота или в смеси азота с инертными газами. Последующее окисление полученного слоя осуществляют в плазме с плотностью 109 до 10 15 см-3 стационарного или импульсного магнетронного разряда и/или высокочастотного разряда. Предложенный экологически безопасный и простой способ позволяет получить анодную фольгу с высокой удельной емкостью. 1 з.п. ф-лы, 3 ил.

2391442
патент выдан:
опубликован: 10.06.2010
ФОЛЬГА ИЛИ ПОЛОСА ИЗ РАФИНИРОВАННОГО АЛЮМИНИЯ ДЛЯ ЭЛЕКТРОЛИТИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к фольге или тонким полосам рафинированного алюминия чистотой выше 99,9%, которые после обработки поверхности травлением применяют для изготовления анодов электролитических конденсаторов, в частности - конденсаторов высокого напряжения. Фольга или тонколистовая полоса имеет поверхностную зону глубиной 10 нм, содержащую от 5 до 25 ат.% карбида алюминия. Фольгу или тонкую полосу получают путем отливки листа из рафинированного алюминия, его гомогенизации, горячей прокатки, холодной прокатки и конечного отжига. Конечный отжиг проводят в нейтральной атмосфере с добавлением газа, содержащего атомы углерода, с получением поверхностной зоны глубиной 10 нм, содержащей от 5 до 25 ат.% карбида алюминия. Газ, содержащий атомы углерода, выбирают из группы, состоящей из метана, пропана, бутана, изобутана, этилена, ацетилена, пропена, пропина и бутадиена. Получают фольгу или полосы, имеющие лучшую склонность к травлению и позволяющие дополнительно улучшить рабочие характеристики электролитических конденсаторов. 2 н. и 2 з.п. ф-лы, 1 табл.

2318912
патент выдан:
опубликован: 10.03.2008
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ФОЛЬГИ И КАТОДНАЯ ФОЛЬГА ЭЛЕКТРОЛИТИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к области электротехники, в частности к изготовлению катодной фольги для электролитических конденсаторов и способу ее получения. Способ получения катодной фольги заключается в том, что в вакуумной камере на обе стороны алюминиевой основы наносят пористый слой нитрида титана методом электронно-лучевого испарения при непрерывном перемещении алюминиевой основы над испарителем на расстоянии 340÷700 мм и поддержании давления в вакуумной камере 0,08÷0,2 Па в атмосфере азота. Конденсация нитрида титана происходит при комбинированной подаче азота из двух испарителей, состоящей из постоянной подачи азота в пределах (15÷30)×10-6 м 3/с, направленной в зону конденсации, и стабилизирующей подачи азота, направленной в объем вакуумной камеры. Угол падения парового потока составляет 68°÷78°. Поток дважды меняет свое направление при проходе зоны конденсации. Температура конденсации поддерживается 200°÷550°С. Испарители могут быть расположены симметрично относительно оси симметрии алюминиевой основы на расстоянии друг от друга 220÷300 мм. Катодная фольга содержит алюминиевую основу толщиной 10-30 мкм, с обеих сторон которой имеется пористый слой нитрида титана, включающий кристаллиты и блоки кристаллитов, разделенных порами. Толщина слоя нитрида титана составляет 0,5÷6,0 мкм, а кристаллиты и блоки кристаллитов имеют гранулированную структуру и вытянуты перпендикулярно поверхности алюминиевой основы. Общая пористость нитрида титана равна 30÷60%, а открытая пористость 20÷40%, причем содержание равновесной структуры нитрида титана в объеме конденсата достигает 80%. Катодная фольга обладает электростатической емкостью в пределах 800÷5000 мкФ/см2 . Техническим результатом изобретения является создание катодной фольги, обладающей максимальной площадью поверхностного контакта с электролитом конденсатора, высокой коррозионной устойчивостью в электролите и минимальным сопротивлением на переходе катод-электролит. 2 н. и 10 з.п. ф-лы, 5 ил.

2313843
патент выдан:
опубликован: 27.12.2007
Наверх