Термоэлектрические приборы, содержащие переход между различными материалами, т.е. приборы, основанные на эффекте Зеебека или эффекте Пельтье, с другими термоэлектрическими и термомагнитными эффектами или без них, способы и устройства, специально предназначенные для изготовления или обработки таких приборов или их частей, конструктивные элементы таких приборов: .конструктивные элементы – H01L 35/02

МПКРаздел HH01H01LH01L 35/00H01L 35/02
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01L Полупроводниковые приборы; электрические приборы на твердом теле, не отнесенные к другим классам или подклассам
H01L 35/00 Термоэлектрические приборы, содержащие переход между различными материалами, т.е. приборы, основанные на эффекте Зеебека или эффекте Пельтье, с другими термоэлектрическими и термомагнитными эффектами или без них; способы и устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов
H01L 35/02 .конструктивные элементы

Патенты в данной категории

НАНОСТРУКТУРЫ С ВЫСОКИМИ ТЕРМОЭЛЕКТРИЧЕСКИМИ СВОЙСТВАМИ

Изобретение относится к наноструктурам с высокими термоэлектрическими свойствами. Предложена одномерная (1D) или двумерная (2D) наноструктура, являющаяся нанопроволокой из кремния, полученной методом безэлектролизного травления или выращенной методом VLS (пар-жидкость-кристалл). Наноструктура имеет шероховатую поверхность и содержит легированный или нелегированный полупроводник. Предложены варианты способа вырабатывания электрического тока с использованием заявленных наноструктур, а также варианты устройств для термоэлектрического преобразования с их использованием. Технический результат - предложенная наноструктура может быть размещена между двумя электродами и эффективно использована для термоэлектрического генерирования мощности или для термоэлектрического охлаждения. 18 н. и 30 з.п. ф-лы, 9 ил., 2 пр.

2515969
патент выдан:
опубликован: 20.05.2014
ПРЕОБРАЗОВАТЕЛЬ ЭНЕРГИИ

Изобретение относится термоэлектрическим преобразователям энергии. Сущность: преобразователь энергии содержит теплособирающую поверхность, n- и р-выводы, сформированные из термоэлектрических материалов n- и р-типа соответственно, каждый из которых расположен в тепловой связи с указанной теплособирающей поверхностью, параллельные электрические шины, электрически соединенные с n- и р-выводами, и корпус. Корпус электрически разъединен с указанными шинами и удерживает теплособирающую поверхность на заданном расстоянии от тепловой трубы. Технический результат - возможность выдерживания стартовых нагрузок и приспосабливание к температурному расширению во время запуска реактора с тепловыми трубами. 3 н. и 17 з.п. ф-лы, 6 ил.

2507635
патент выдан:
опубликован: 20.02.2014
ТЕРМОЭЛЕКТРИЧЕСКИЙ ЭЛЕМЕНТ

Изобретение относится к термоэлектрическому преобразованию энергии. Сущность: термоэлектрический элемент содержит, по меньшей мере, одну термопару и один рn-переход. Термопара содержит первый материал с положительным коэффициентом Зеебека и второй материал с отрицательным коэффициентом Зеебека. Первый материал (1) через металлический проводник (6) селективно контактирует с р-областью (4) рn-перехода (3). Второй материал (2) через металлический проводник (7) селективно контактирует с n-областью (5) рn-перехода (3). Технический результат: повышение кпд. 3 н. и 14 з.п. ф-лы, 10 ил.

2419919
патент выдан:
опубликован: 27.05.2011
УНИВЕРСАЛЬНАЯ ТЕРМОЭЛЕКТРИЧЕСКАЯ МАШИНА БЕЛАШОВА

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения универсальной термоэлектрической машины, предназначенной для использования в энергетике, промышленности и народном хозяйстве в качестве статического или динамического термоэлектрического генератора постоянного тока, который преобразует тепло работающих ядерных реакторов, энергетических блоков, двигателей внутреннего сгорания, источников солнечной энергии, источников термальных вод, печей, газовых горелок и других технических сооружений в электрическую энергию, а также в качестве электрических машин постоянного тока, работающих от источника термоэлектричества, получаемого от перепада температур, устройств вращения магнитных систем, вращающихся фурм для установок сжигания твердых бытовых и других органических отходов с углем, силовых приводов транспортных средств, подъемных механизмов, транспортеров, систем автоматического регулирования и управления механическими устройствами, измерительных и эталонных устройств. Предлагаемая универсальная термоэлектрическая машина содержит множество термоэлементов, имеющих две ветви, одна из которых p-типа, а вторая n-типа верхнего яруса, или множество проводников, имеющих две ветви из разнородных проводников, выполненных в виде термопар нижнего яруса, которые, не меняя направление движения тока в проводниках, проходят сквозь множество замкнутых магнитных систем без каких-либо переключающихся устройств. Универсальная термоэлектрическая машина, содержащая также корпус, статор с магнитной системой возбуждения, выполненной в виде одного монолитного магнита, имеющего магнитопровод, магнит северного полюса, размещенного на орбите верхнего яруса, и магнит южного полюса, размещенного на орбите нижнего яруса, которые расположены через равномерные или неравномерные промежутки, для взаимодействия через воздушный зазор с множеством батарей указанных полупроводниковых термоэлементов, имеющих две ветви, одна из которых p-типа, а другая n-типа, или множеством батарей термопар, имеющих две ветви из разнородных проводников, выполненных в виде отдельных модулей, собранных в блоки и установленных в термическом изоляционном и экранирующем устройстве на магнитопроводах верхнего и нижнего ярусов. Универсальная термоэлектрическая машина содержит множество батарей полупроводниковых термоэлементов и термопар, которые расположены между узлом нагревателя и узлом охладителя и установлены вокруг магнитопроводов статора, смонтированных на диэлектрическом основании орбит верхнего и нижнего ярусов. Магнитопроводы верхнего основания под заданным углом соединены с магнитопроводами нижнего основания и через воздушные зазоры взаимодействуют с системой возбуждения ротора. Множество батарей полупроводниковых термоэлементов и термопар верхнего и нижнего ярусов защищено от узла нагревателя защитным кожухом, керамической вставкой и теплоизоляционным устройством, а сам узел нагревателя в местах соединений проводников горячего спая, состоящих из разнородных материалов или полупроводниковых термоэлементов, расположен на внешней стороне корпуса для взаимодействия с внешним источником теплового излучения или внутри ротора для взаимодействия с внутренним источником теплового излучения. Узел охладителя расположен внутри машины, в местах соединений проводников холодного спая, состоящих из разнородных материалов или полупроводниковых термоэлементов, которые взаимодействуют с холодильным устройством, установленным внутри магнитной системы возбуждения ротора и выполненным в виде холодильного аппарата абсорбционно-диффузионного типа. При вращении машины от сигнала постоянного тока во множестве батарей полупроводниковых термоэлементов и множестве батарей термопар, размещенных на орбите верхнего яруса, результирующая сила должна быть направлена по часовой стрелке, а во множестве батарей полупроводниковых термоэлементов и множестве батарей термопар, размещенных на орбите нижнего яруса, должна быть направлена против часовой стрелки. Причем в зависимости от предназначения универсальной термоэлектрической машины магнитную систему возбуждения, множество батарей полупроводниковых термоэлементов и множество батарей термопар можно установить на валу или на корпусе. При использовании внешнего источника солнечного или теплового излучения, расположенного в окружающей среде, множество батарей полупроводниковых термоэлементов и множество батарей термопар должны быть расположены на внешней стороне корпуса, а при использовании внутреннего источника теплового излучения множество батарей термопар верхнего яруса и множество батарей термопар нижнего яруса должны быть расположены внутри ротора, при этом вращение, через элементы качения или скольжения, может быть осуществлено как самого вала, так и его корпуса. 3 з.п. ф-лы, 5 ил.

2414041
патент выдан:
опубликован: 10.03.2011
КОМПАКТНЫЕ ВЫСОКОЭФФЕКТИВНЫЕ ТЕРМОЭЛЕКТРИЧЕСКИЕ СИСТЕМЫ

Изобретение относится к конструкциям твердотельных систем охлаждения, нагревания и выработки электроэнергии. Термоэлектрическая система содержит множество термоэлектрических модулей, по меньшей мере некоторые из которых по существу теплоизолированы друг от друга и каждый из которых имеет горячую сторону и холодную сторону. По меньшей мере одни твердые рабочие средства выполнены с возможностью перемещения и находятся в тепловом контакте последовательно по меньшей мере с двумя из указанного множества термоэлектрических модулей. Рабочие средства постепенно охлаждаются или нагреваются поэтапно по меньшей мере двумя из указанного множества термоэлектрических модулей. Рабочие средства выполнены с возможностью их перемещения по мере их нагревания или охлаждения относительно по меньшей мере двух из указанного множества термоэлектрических модулей. Рабочие средства содержат множество дисковидных средств, установленных на вращающемся валу и образующих с термоэлектрическими модулями, между которыми расположены по меньшей мере некоторые дисковидные средства, конфигурацию наподобие штабеля. Рабочие средства представляют собой множество рабочих средств, образующих конфигурацию наподобие штабеля, в котором эти средства чередуются с термоэлектрическими модулями. Рабочие средства по существу теплоизолируют по меньшей мере некоторые из указанного множества термоэлектрических модулей. Техническим результатом является повышение эффективности преобразования энергии. 4 н. и 12 з.п.ф-лы, 11 ил.

2355958
патент выдан:
опубликован: 20.05.2009
МОДУЛЬНАЯ РЕНТГЕНОВСКАЯ ТРУБКА, А ТАКЖЕ СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОЙ МОДУЛЬНОЙ РЕНТГЕНОВСКОЙ ТРУБКИ

Использование: для генерации рентгеновского излучения высокой интенсивности. Сущность: заключается в том, что рентгеновская трубка (10) имеет анод (20) и катод (30), расположенные в вакуумированной полости (40) противоположно друг другу, причем на катоде (30) генерируются электроны (е-), посредством прикладываемого высокого напряжения они ускоряются к аноду (20), и посредством этих электронов (е-) на аноде (20) генерируется рентгеновское излучение ( ), причем рентгеновская трубка (10) содержит несколько дополняющих друг друга ускоряющих модулей (41, ..., 45), каждый ускоряющий модуль (41, ..., 45) содержит по меньшей мере один потенциалонесущий электрод (20/30/423/433/443), первый ускоряющий модуль (41) содержит катод (30) с извлечением электронов (е -), а второй ускоряющий модуль (45) содержит анод (20) с генерированием рентгеновского излучения ( ), при этом рентгеновская трубка (10) содержит по меньшей мере один дополнительный ускоряющий модуль (42, ..., 44) с потенциалонесущим электродом (423/433/443), причем ускоряющий модуль (42, ..., 44) для ускорения электронов является сколь угодно часто повторяющимся образом подключаемым последовательно, и при этом рентгеновская трубка (10) выполнена модульной. Технический результат: получение рентгеновского излучения очень высокой мощности при одновременном выполнении очень малых размеров рентгеновской трубки, а также возможность замены отдельных дефектных деталей рентгеновской трубки без необходимости замены всей рентгеновской трубки за счет модульного характера исполнения рентгеновской трубки. 3 н. и 18 з.п. ф-лы, 13 ил.

2344513
патент выдан:
опубликован: 20.01.2009
ДАТЧИК ТЕМПЕРАТУРЫ

Заявляемый датчик температуры относится к измерительной технике, в частности к датчикам температуры, используемым для измерения температуры ответственных объектов (например, температуры сред энергетических установок). Техническим результатом от использования предлагаемого изобретения является обеспечение оперативной проверки метрологических характеристик без демонтажа с объекта контроля при повышении надежности процесса эксплуатации датчика температуры и повышение работоспособности датчика температуры в процессе эксплуатации. Указанный результат достигается тем, что в датчике температуры, содержащем защитный чехол, где размещены один или несколько чувствительных элементов, выводы которых подключены к узлу соединения с удлинительными проводами, скрепленному с защитным чехлом, в котором внутренняя полость защитного чехла разделена продольно теплопроводящим материалом на несколько полостей, герметично изолированных друг от друга на длине защитного чехла, и в части из полостей находятся чувствительные элементы с выводами. В других полостях размещены извлекаемые в процессе эксплуатации датчика температуры индикаторы наличия измеряемой среды, снабженные узлами крепления их в полости, которые установлены со стороны узла соединения с удлинительными проводами датчика температур. 2 з.п. ф-лы, 4 ил.

2327122
патент выдан:
опубликован: 20.06.2008
УСТРОЙСТВО ЭЛЕКТРОДА И ЯЧЕЙКИ

Изобретение относится к электрическим ячейкам. Устройство электрода содержит подложку, расположенный на подложке первый электрод и второй электрод, расположенный на подложке отдельно от первого электрода. Первый электрод содержит множество слоев тонких пленок металла и приспособлен для выработки тепла и передачи тепла к средствам преобразования тепла в электрическую энергию и/или для осуществления реакций преобразования. Устройства ячейки включают электропроводные элементы и твердотельный источник заряженных ионов, предназначенных для миграции в электропроводные элементы и через них. 7 н. и 38 з.п. ф-лы, 11 ил., 4 табл.

2265677
патент выдан:
опубликован: 10.12.2005
ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР

Изобретение относится к области преобразования тепловой энергии в электрическую и может быть использовано в термоэлектрических генераторах (ТЭГ), применяемых с целью утилизации отработавшего тепла ядерных реакторов, двигателей внутреннего сгорания (ДВС), дизельных и других тепловых двигателей. Техническим результатом является повышение добротности термоэлементов, собранных в специальные модули за счет увеличения единичной мощности самих модулей, а также за счет повышения рабочей температуры горячего спая. Для достижения указанного технического результата предлагается ТЭГ, содержащий узел нагревателя, узел охладителя и батареи термоэлементов, выполненные в виде модулей, которые собраны в блок, размещенный между узлами нагревателя и охладителя. Узел нагревателя может быть выполнен полым, что дает возможность устанавливать его на выхлопной трубе ДВС или дизеля. Предложенная конструкция в сочетании с 4-компонентным материалом термоэлементов обеспечивает получение компактного генератора, который легко размещается как в корпусе судов в месте размещения выхлопной трубы, так и автомобиля. При этом в зависимости от мощности двигателя можно получить генератор с выходной мощностью 10-30 кВт и более и с кпд порядка 10%. 3 з.п. ф-лы, 1 ил.
2191447
патент выдан:
опубликован: 20.10.2002
ПОЛУПРОВОДНИКОВОЕ ДЛИННОМЕРНОЕ ИЗДЕЛИЕ ДЛЯ ТЕРМОЭЛЕКТРИЧЕСКИХ УСТРОЙСТВ

Использование: в областях, использующих полупроводниковые, в частности термоэлектрические, приборы, а именно в холодильных и нагревательных устройствах, в источниках электроэнергии и т.д. Сущность изобретения: полупроводниковые изделия выполнены составными, по меньшей мере, из двух частей, имеющих контактные и соединительные поверхности, соединенных промежуточными электропроводящими слоями, в частности многослойными, состоящими из антидиффузионных, коммутационных и соединительного слоев. На контактные поверхности нанесены покрытия, в частности, также многослойные. По меньшей мере, одна из частей выполнена из материала, плоскости спайности которого преимущественно ориентированы перпендикулярно контактным поверхностям. Части полупроводникового изделия могут быть ориентированы различным образом. Технический результат: повышение эффективности термоэлектрических приборов при обеспечении высокой технологичности их изготовления путем увеличения термоэлектрических параметров. Для облегчения процесса сборки одна из контактных поверхностей изделия имеет маркировку. 9 з.п. ф-лы, 6 ил., 1 табл.
2181516
патент выдан:
опубликован: 20.04.2002
ПОЛУПРОВОДНИКОВОЕ ИЗДЕЛИЕ

Изобретение относится к термоэлектрическим устройствам, основанным на эффектах Пельтье и Зеебека. Полупроводниковое изделие для термоэлектрического устройства изготовлено из кристаллического материала типа AVBVI со слоистой структурой, имеющей параллельное расположение слоев, и выполнено с противолежащими гранями, покрытыми электропроводными слоями и расположенными параллельно слоям кристаллического материала, из которого изготовлено полупроводниковое изделие. Грань, покрытая электропроводным слоем, образована поверхностью кристаллического материала, полученной в результате его кристаллизации и свободной от разрушающей обработки. Изобретение повышает эффективность термоэлектрических устройств. 3 ил.
2179354
патент выдан:
опубликован: 10.02.2002
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ

Изобретение относится к полупроводниковым приборам, в частности к термоэлектрическим батареям, работающим на основе эффекта Пельтье. Сущность изобретения: термоэлектрическая батарея содержит полупроводниковые ветви р- и n- проводимости, соединенные коммутационными шинами, токоподводы и металлические теплопереходы толщиной 0,5 - 6,0 мм, которые могут быть выполнены из алюминия, алюминия с нанесенной на него оксидной пленкой толщиной 3 - 150 мкм или из меди, покрытой слоем диэлектрического материала, например органическим лаком, окисью алюминия, нитридом кремния и т.д. Термоэлектрическая батарея имеет средство компенсации термических напряжений в виде слоя теплопроводного эластичного электроизоляционного материала с коэффициентом теплопроводности не менее 0,3 Вт/мК, величиной упругой деформации не менее 30% и величиной модуля Юнга не более 95 МПа, при этом толщина слоя материала составляет не менее 0,001 длины коммутационной шины. Термобатарея имеет также дополнительное средство компенсации термических напряжений, которое может быть выполнено в виде сквозных прорезей как минимум в одном теплопереходе, заполненных эластичным материалом, либо в виде тиснений, нанесенных на теплопереход, а также в виде расположенного по периферии теплоперехода и заполняющего пространство между теплопереходами слоя эластичного теплоизоляционного материала, в этом случае модуль Юнга слоя теплопроводного эластичного электроизоляционного материала должен составить не более 1 МПа. Кроме того, слой теплопроводного эластичного электроизоляционного материала, расположенный между коммутационными шинами и теплопереходами, может быть неоднородным по своим свойствам, а именно: в центральной части модуль Юнга - не менее 0,5 МПа, а по периферии не более 0,1 МПа. Данная конструкция термоэлектрической батареи позволит расширить область их применения, например значительно повысить давление рабочей среды, контактирующей с теплопереходами, а наличие эффективных средств компенсации термических напряжений - увеличить холодопроизводительность и повысить срок эксплуатации устройства. Использование металлических теплопереходов позволяет улучшить теплофизические характеристики: повысить стойкость к ударам и снизить потери теплового напора в теплопереходах. 8 з.п.ф-лы, 4 ил.
2142177
патент выдан:
опубликован: 27.11.1999
КОАКСИАЛЬНЫЕ ТЕРМОЭЛЕМЕНТЫ И ТЕРМОПАРЫ, ИЗГОТОВЛЕННЫЕ ИЗ КОАКСИАЛЬНЫХ ТЕРМОЭЛЕМЕНТОВ

Коаксиальный термоэлемент, имеющий термопарную проволоку, коаксиально расположен в трубчатой металлической оболочке. Электрически изолирующий керамический порошок расположен в трубчатой металлической оболочке для того, чтобы изолировать термопарный провод от трубчатой металлической оболочки. Трубчатая металлическая оболочка содержит первую металлическую оболочку, имеющую продольный шов, и вторую трубчатую металлическую оболочку, имеющую продольный шов, смещенный от продольного шва первой трубчатой металлической оболочки. Термопара сформирована при помощи сварки термопарной проволоки со своей металлической оболочкой в каждом из двух коаксиальных термоэлементов и при помощи соединения сваренных концов двух коаксиальных термоэлементов в виде термопарного соединения. Более низкая стоимость термоэлементов и облегчение сварки приводит к более высокому качеству термопарного изделия. 2 с. и 4 з.п.ф-лы, 9 ил.
2140118
патент выдан:
опубликован: 20.10.1999
ТЕРМОПАРА

Использование: при оценке энергии (мощности) источника излучения, Сущность изобретения: термопара представляет собой отрезок стекловолокна с напыленными слоями разнородных металлов, образующими ветви термопары, контактами и диэлектрическим покрытием. На ветвях термопары и между ними нанесен резистивный слой. 1 ил.
2094912
патент выдан:
опубликован: 27.10.1997
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ТЕМПЕРАТУРЫ

Использование: в электронной технике, а именно в полупроводниковых датчиках температуры. Сущность изобретения: датчик содержит область однородного сопротивления и области низкого сопротивления с противоположным типом проводимости. Толщина области однородного сопротивления датчика выбрана из соотношения W=(0,7...2)L, где L - диффузионная длина носителей заряда в области однородного сопротивления. 1 э.п. ф-лы, 1 ил.
2090953
патент выдан:
опубликован: 20.09.1997
ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР

Использование: в качестве источника электроэнергии малой мощности для питания оборудования автономных океанических буев. Сущность изобретения: термоэлектрический генератор для преобразования тепловой энергии океана в электрическую содержит термоэлектрическую батарею, включающую горячий и холодный спаи, аккумулятор теплоты, имеющий тепловой контакт с горячим спаем термоэлектрической батареи, балластную емкость, расположенную над холодным спаем термоэлектрической батареи, выполненную с открытой нижней частью и снабженную управляемым клапаном, связывающим верхнюю часть емкости с окружающей средой. 1 ил.
2031486
патент выдан:
опубликован: 20.03.1995
ТЕРМОЭЛЕКТРИЧЕСКИЙ ЭЛЕМЕНТ, БАТАРЕЯ ТЕРМОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ

Использование: в области термоэлектрического преобразования энергии. Сущность изобретения: термоэлектрический элемент содержит пленочные или пластинчатые полупроводниковые ветви с n- и р- типами проводимости и снабжен внутренним электропроводящим слоем с образованием биполярной системы. Полупроводниковые ветви нанесены на лицевые поверхности электропроводящего слоя, при этом, на границах раздела "металл - полупроводник" образованы квазидвумерные структуры электрических зарядов. Батарея термоэлектрических элементов содержит не менее двух термоэлектрических элементов, полупроводниковая ветвь с n- типом проводимости одного из которых объединена с полупроводниковой ветвью р- типа проводимости другого через общий электропроводящий слой. Термоэлектрические элементы могут быть соединены параллельно или комбинировано в виде сочетания последовательно и параллельно соединенных звеньев. При изготовление термоэлектрических элементов и батарей полупроводниковые ветви n- и р- типов проводимости наносят на лицевые стороны электропроводящего слоя. Полупроводниковые ветви могут быть напылены, электрически осаждены или получены ионной имплантацией. Соединение термоэлементов можно производить под давлением с контролем электрических параметров. 3 с. и 22 з. п. ф-лы, 5 ил.
2010396
патент выдан:
опубликован: 30.03.1994
НИЗКОТЕМПЕРАТУРНЫЙ ТЕРМОЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Область использования: прямое преобразование тепловой энергии в электрическую. Сущность изобретения: в низкотемпературном термоэлементе, ветви которого выполнены из тройных сплавов на основе теллурида висмута, коммутационные слои выполнены из железа или его сплавов и присоединены к торцевым поверхностям ветвей, а средняя часть коммутационного слоя расположена на торцевой поверхности электроизоляционной прослойки. Коммутационные шины присоединены к коммутационным слоям, при этом соотношение толщины коммутационного слоя и высоты коммутационной шины выбирают в пределах 1 : 3 - 10. При изготовлении термоэлемента после прессования ветвей из порошков полупроводниковых материалов при комнатной температуре на их торцевые поверхности посредством газоплазменного напыления наносят коммутационный слой и затем коммутационную шину, после чего проводят упрочнение посредством отжига или "горячего" прессования. Приводятся оптимальные режимы газоплазменного напыления и упрочнения. 2 с. п. ф-лы, 7 з. п. ф-лы, 3 ил.
2009577
патент выдан:
опубликован: 15.03.1994
Наверх