Лазеры, т.е. устройства для генерирования, усиления, модуляции, демодуляции или преобразования частоты, использующие стимулированное излучение электромагнитных волн с длиной волны большей, чем длина волны в ультрафиолетовом диапазоне: ...в газодинамических лазерах, т.е. лазерах с расширением газовой среды до сверхзвуковых скоростей потока – H01S 3/0979
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01S Устройства со стимулированным излучением
H01S 3/00 Лазеры, т.е. устройства для генерирования, усиления, модуляции, демодуляции или преобразования частоты, использующие стимулированное излучение электромагнитных волн с длиной волны большей, чем длина волны в ультрафиолетовом диапазоне
H01S 3/0979 ...в газодинамических лазерах, т.е. лазерах с расширением газовой среды до сверхзвуковых скоростей потока
Патенты в данной категории
СПОСОБ СОЗДАНИЯ ИНВЕРСНОЙ НАСЕЛЕННОСТИ В ГАЗОДИНАМИЧЕСКОМ CO2-ЛАЗЕРЕ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Изобретение может быть использовано в лазерной технике и, в частности в устройствах газодинамических СО2-лазеров. Способ создания инверсной населенности в газодинамическом СО2-лазере заключается в том, что организуют струйное перемешивание компонент в дозвуковой части сопла таким образом, чтобы полное перемешивание газов на мономолекулярном уровне произошло в районе критического сечения сопла. При этом параметры смешивающихся газов подбирают и поддерживают в процессе протекания реакций в заданном диапазоне такими, что создаются условия, когда при низкой статической температуре газов колебательная энергия вновь образующихся молекул в результате химических реакций накапливается в газе, передается молекулам реагирующих газов, увеличивая их скорость реакций. Увеличение скоростей химических реакций, в свою очередь, приводит к росту накопления колебательной энергии в молекулах смеси газов, при этом создаются условия выгорания в первую очередь СО и в меньшей степени Н2. В конечном счете в смеси газов активной среды газодинамического СО2-лазера оказывается существенно больше накопленной колебательной энергии, низкое содержание паров воды при меньшей статической температуре газов по сравнению с обычным газодинамическим лазером. Устройство содержит инжекторный узел камеры сгорания, установленный перед сопловым блоком и через отверстия которого осуществляется вдув холодного компонента газа. Отверстия инжекторного узла размещены на оптимальном расстоянии (Lopt) от района критического сечения сопел, определяемого из соотношения Lopt = ud2/Dt, где u - скорость смеси газов в дозвуковой части сопла; d - характерный размер инжекторного устройства; Dt - коэффициент турбулентной диффузии. Сопловые лопатки имеют центральные каналы для охлаждения водой, которые стыкуются с подающим и сливным трубопроводами, а в дозвуковой части каналы с отверстиями инжектора для подачи холодного газового компонента в основной поток газа. При этом высота и площадка постоянного критического сечения сопел (h) должны удовлетворять соотношению h < 2хим(u/)3D2М, где хим - скорость химической реакции реагирующих газов; u - скорость смеси газов в районе критического сечения сопла; - кинематическая вязкость смеси газов; DМ - коэффициент молекулярной диффузии смешивающихся газов. Технический результат: повышение эффективности газодинамического лазера. 2 с. и 6 з.п. ф-лы, 4 ил. | 2170998 патент выдан: опубликован: 20.07.2001 |
|
ГАЗОДИНАМИЧЕСКИЙ CO2-ЛАЗЕР Область применения изобретения - лазерная техника (газодинамические лазеры). Газодинамический СO2-лазер содержит генератор нагретого рабочего газа, сопловой блок, рабочую часть с полостями для оптического резонатора с устройствами юстировки зеркал, многоканальный диффузор. Генератор нагретого рабочего тела включает плоскую камеру сгорания и блок подмешивания с ресивером. На входе камеры сгорания выполнен плоский коллектор горючего, стенка которого, обращенная к огневому днищу, образована размещенным внутри полости горючего дефлектором с отверстиями для подачи горючего в зазор между дефлектором и огневым днищем и далее в полость горючего. В форсунки, соединенные с огневым днищем и с перегородкой, разделяющей полости горючего и окислителя, подача горючего осуществляется между дефлектором и перегородкой. Блок подмешивания азота включает переднюю стенку и заднюю стенку с отверстиями и размещенные между стенками соосно отверстиям смесительные элементы. Передняя стенка выполнена в виде набора пластин, соединенных с корпусом и между собой с возможностью их термического расширения. В пластинах концентрично смесительным элементам выполнены проточки с образованием щелевых каналов для протока подмешиваемого компонента. Выходы из щелевых каналов сообщены с входами смесительных элементов. В лопатках соплового блока внутри цилиндрических каналов охлаждения размещены силовые стержни, соединенные с корпусом соплового блока. Решетка сопел установлена в корпусе соплового блока с образованием в корпусе над и под решеткой сопел полостей для подвода/отвода рабочего компонента. В решетке сопел по краям установлены периферийные лопатки и вкладыши, которые в совокупности образуют сопла завесы-вдува и их ресиверы. Во вкладыше выполнен канал, сообщенный с полостью подвода рабочего компонента и с ресивером сопла завесы-вдува. Полость подвода рабочего компонента сообщена с источником рабочего компонента. Полость отвода рабочего компонента сообщена с генератором нагретого рабочего газа. В многоканальном диффузоре размер входа в крайний канал диффузора согласован с высотой выхода единичного сопла соплового блока и длиной рабочей части. Сборка камеры сгорания, блока подмешивания, ресивера и соплового блока выполнена по типу замкового соединения. В полости оптического резонатора за выходным зеркалом под углом к лучу лазера установлено дополнительное зеркало наблюдения. Технический результат изобретения: высокая эффективность, надежность в работе, компактность и весовое совершенство лазера. 4 з.п.ф-лы, 8 ил. | 2169976 патент выдан: опубликован: 27.06.2001 |
|