Лазеры, т.е. устройства для генерирования, усиления, модуляции, демодуляции или преобразования частоты, использующие стимулированное излучение электромагнитных волн с длиной волны большей, чем длина волны в ультрафиолетовом диапазоне: ..из твердых материалов – H01S 3/16
Патенты в данной категории
МОНОКРИСТАЛЛ ГРАНАТА, ОПТИЧЕСКИЙ ИЗОЛЯТОР И ОПТИЧЕСКИЙ ПРОЦЕССОР
Группа изобретений относится к производству монокристалла алюмотербиевого граната, который может быть использован в качестве фарадеевского вращателя для оптических изоляторов. В монокристалле алюмотербиевого граната часть алюминия, по меньшей мере, заменена на скандий, и часть, по меньшей мере, одного из алюминия или тербия заменена, по меньшей мере, одним компонентом, выбранным из группы, состоящей из тулия, иттербия и иттрия, при этом монокристалл граната представлен общей формулой |
2528669 патент выдан: опубликован: 20.09.2014 |
|
ЛАЗЕРНАЯ ФТОРИДНАЯ НАНОКЕРАМИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ
Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики. Фторидную нанокерамику получают термомеханической обработкой исходного кристаллического материала, выполненного из CaF2-YbF3, при температуре пластической деформации до получения заготовки в виде поликристаллического микроструктурированного вещества, характеризующегося размером зерен кристаллов 3-100 мкм и наноструктурой внутри зерен, путем отжига на воздухе при температуре не менее 0,5 от температуры плавления с уплотнением полученной заготовки в вакууме при давлении 1-3 тс/см2 до окончания процесса деформации, после чего отжигают в активной среде тетрафторида углерода при давлении 800-1200 мм рт.ст. В качестве исходного кристаллического материала могут быть использованы мелкодисперсный порошок, прошедший термообработку в тетрафториде углерода, или отформованная заготовку кристаллического материала, полученная из порошка и термообработанная в тетрафториде углерода. Изобретение позволяет получать фторидную нанокерамику высокой степени чистоты с повышенной однородностью структуры данного оптического материала. 2 н. и 2 з.п. ф-лы, 3 пр., 1 табл. |
2484187 патент выдан: опубликован: 10.06.2013 |
|
ПОЛИМЕРНЫЕ НАНОЧАСТИЦЫ, СОДЕРЖАЩИЕ СРЕДУ ДЛЯ ПРЕОБРАЗОВАНИЯ ФОТОНОВ С ПОВЫШЕНИЕМ ЧАСТОТЫ
Изобретение относится к полимерным наночастицам, содержащим среду для преобразования фотонов с повышением частоты, и к способу получения таких полимерных наночастиц. Полимерные наночастицы содержат среду для преобразования фотонов с повышением частоты и стабилизирующий агент. Указанная среда содержит полимерную матрицу с распределенными в ней двумя органическими компонентами. Первый компонент способен поглощать свет первой длины волны в диапазоне w 1 x и действует как сенсибилизатор в указанной среде. Второй компонент способен эмитировать свет второй длины волны в диапазоне y 2 z, где 2 1, и действует как эмитирующий компонент в указанной среде. Стабилизирующий агент выбран из гидрофильных или амфифильных полимеров. Предложенные полимерные наночастицы обладают универсальностью в отношении длин волн излучения - падающего и испускаемого, и могут быть использованы в областях биологии и/или медицины; кроме того, размер и поверхностные свойства указанных наночастиц можно регулировать с обеспечением преобразования фотонов с повышением частоты для оптоэлектронных устройств. 3 н. и 12 з.п. ф-лы, 13 ил., 4 пр. |
2479616 патент выдан: опубликован: 20.04.2013 |
|
СПОСОБ ИЗМЕНЕНИЯ ОБЫКНОВЕННОГО ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ НЕЛИНЕЙНОГО КРИСТАЛЛА GaSe
Изобретение относится к технической физике и нелинейной оптике и может быть использовано при создании параметрических преобразователей частоты лазерного излучения в средний инфракрасный (ИК) и терагерцовый (ТГц) диапазоны спектра. Изменение обыкновенного показателя преломления нелинейного кристалла GaSe осуществляют легированием малоразмерным по отношению к химическому элементу Ga химическим элементом Al в концентрации 0,005-0,05 мас.%. Технический результат изобретения заключается в увеличении показателя преломления для волн обыкновенной поляризации в кристаллах GaSe при минимальных изменениях значения показателя преломления для волн необыкновенной поляризации. 1 табл. |
2472876 патент выдан: опубликован: 20.01.2013 |
|
ТВЕРДОТЕЛЬНЫЙ ИСТОЧНИК ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Заявляемое устройство относится к спинтронике и фотонике и предназначено для генерации когерентного и некогерентного электромагнитного излучения в диапазоне террагерцовых частот. Твердотельный источник электромагнитного излучения содержит рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала, первый электрод из проводящего ферромагнитного материала, контактирующий с рабочим слоем, и второй электрод из проводящего материала, контактирующий с рабочим слоем. Рабочий слой твердотельного источника расположен на подложке из диэлектрика или полупроводника, прозрачного для излучения рабочего диапазона длин волн. Второй электрод выполнен в виде массивной пластины со сквозным отверстием, расположенной на поверхности рабочего слоя. Первый электрод выполнен в виде стержня с заостренным концом, вставленного в отверстие упомянутой пластины, так что торец его заостренного конца находится в контакте с рабочим слоем. Технический результат заключается в увеличении мощности электромагнитного излучения. 2 з.п. ф-лы, 2 ил. |
2464683 патент выдан: опубликован: 20.10.2012 |
|
ОПТИЧЕСКИЙ КВАНТОВЫЙ ГЕНЕРАТОР ДВУХМИКРОННОГО ДИАПАЗОНА ДЛИН ВОЛН
Изобретение относится к устройствам со стимулированным излучением, а именно к устройствам для генерации излучения в диапазоне длин волн 1900-2100 нм в непрерывном, импульсном или импульсно-периодическом режимах. Оптический квантовый генератор содержит резонатор из, по крайней мере, двух зеркал, в котором расположена активная среда, изготовленная из керамики оксида лютеция Lu2O3, легированная ионами тулия Tm3+, а в качестве источника оптической накачки использован, по крайней мере, один лазерный диод с излучением на длине волны, выбираемой в диапазоне 774-812 нм. Технический результат заключается в расширении арсенала активных сред для создания высокоэффективного, компактного и относительно недорогого лазера. 8 з.п. ф-лы, 9 ил. |
2459328 патент выдан: опубликован: 20.08.2012 |
|
СПОСОБ ПОЛУЧЕНИЯ ФТОРИДНОЙ НАНОКЕРАМИКИ
Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики. Способ включает термомеханическую обработку исходного кристаллического материала, выполненного из галогенидов металлов, при температуре пластической деформации, получение поликристаллического микроструктурированного вещества, характеризующегося размером зерен кристаллов 3-100 мкм и наноструктурой внутри зерен, причем термомеханическую обработку исходного кристаллического материала проводят в вакууме 10-4 мм рт.ст., достигая степени деформации исходного кристаллического материала на величину от 150 до 1000%, в результате чего получают поликристаллический наноструктурированный материал, который уплотняют при давлении 1-3 тс/см2 до достижения теоретической плотности, после чего отжигают в активной среде фторирующего газа. Решение проблемы получения материала высокого оптического качества для широкого класса соединений фторидной керамики на основе фторидов щелочных, щелочноземельных и редкоземельных элементов, характеризующейся наноструктурой, осуществляется за счет оптимального выбора технологических параметров процесса получения нанокерамики, который включает в себя термическую обработку продукта в условиях, позволяющих увеличить чистоту среды и в результате достичь высоких оптических параметров лазерного материала. 2 з.п. ф-лы. |
2436877 патент выдан: опубликован: 20.12.2011 |
|
ПОЛИКРИСТАЛЛИЧЕСКИЙ ЛАЗЕРНЫЙ МАТЕРИАЛ
Поликристаллический лазерный материал представляет собой микроструктурированное вещество с размером зерен от 3 мкм и состоит из фторидов кальция и иттербия. При этом материал представляет собой твердый раствор фторида кальция и фторида иттербия. Содержание фторида иттербия составляет менее 5 мол.%. Основу структуры материала составляют слоистые зерна, в которых толщина слоев составляет от 30 до 100 нм, а размеры единичных зерен составляют от 30 до 150 мкм. Технический результат заключается в повышении оптических характеристик и теплопроводности лазерного материала. 2 ил. |
2431910 патент выдан: опубликован: 20.10.2011 |
|
ЛАЗЕРНАЯ УСИЛИВАЮЩАЯ СРЕДА И ЛАЗЕРНЫЙ ГЕНЕРАТОР (ВАРИАНТЫ) С ИСПОЛЬЗОВАНИЕМ ТАКОЙ СРЕДЫ
Лазерная среда включает оптическую среду, выполненную с возможностью пропускания лазерного луча и имеющую входную поверхность, первую поверхность и вторую поверхность, противоположную первой поверхности. По меньшей мере одна из усиливающих сред присоединена к первой поверхности оптической среды, и по меньшей мере одна из усиливающих сред присоединена к второй поверхности. Усиливающие среды накачиваются лучом оптической накачки и усиливают лазерный луч при его очередном отражении. Усиливающие среды выполнены из одного и того же оптического материала и легированы по меньшей мере одним активным элементом. Количества легирующего активного элемента в усиливающих средах и/или толщины усиливающих сред в направлении, перпендикулярном к первой или второй поверхностям, подобраны так, чтобы количество теплоты, выделяющейся при поглощении луча оптической накачки, было одинаково для указанных усиливающих сред. Технический результат заключается в обеспечении возможности генерации лазерного луча высокого качества с большой выходной мощностью за счет равномерного усиления лазерной средой. 5 н. и 7 з.п. ф-лы, 14 ил. |
2427061 патент выдан: опубликован: 20.08.2011 |
|
ЛАЗЕРНЫЙ МАТЕРИАЛ
Лазерный материал имеет структуру граната R3 T5O12, где R - ионы, выбранные из группы Y, La, Се, Gd, Sc, Lu; Т - ионы, выбранные из группы Al, Ga, Sc, Lu. В качестве активатора лазерный материал содержит ион трехвалентного гафния. Концентрация активатора составляет от 0,05 до 5 вес.% в расчете на диоксид гафния сверх стехиометрической формулы граната. Лазерный материал может быть выполнен в виде оптической керамики, монокристалла или монокристаллической пленки. Технический результат заключается в создании лазерного материала со структурой граната, который имеет высокую теплопроводность и термостойкость, обладает долговременной стабильностью, а также может генерировать перестраиваемое лазерное излучение в достаточно широкой области спектра. 3 з.п. ф-лы, 2 ил. |
2395883 патент выдан: опубликован: 27.07.2010 |
|
ЛАЗЕРНЫЙ МАТЕРИАЛ
Лазерный материал имеет структуру граната R3 T5O12. R - ионы, выбранные из группы Y, La, Се, Gd, Sc, Lu. Т - ионы, выбранные из группы Al, Ga, Sc, Lu. Лазерный материал содержит активные ионы трехвалентного неодима и сенсибилизатор. В качестве сенсибилизатора содержит, по крайней мере, один ион, выбранный из группы трехвалентных ионов титана, циркония и гафния. Технический результат заключается в повышении теплопроводности, термостойкости, коэффициента полезного действия и стабильности активированного ионами неодима лазерного материала со структурой граната. 3 з.п. ф-лы, 2 ил. |
2391754 патент выдан: опубликован: 10.06.2010 |
|
ЛАЗЕРНОЕ ВЕЩЕСТВО
Изобретение относится к области материалов электронной техники и может найти применение при создании новых устройств фотоники, квантовой электроники и оптики УФ-диапазона спектра. В лазерное вещество на основе кристалла фторида бария и иттрия, активированное трехвалентными ионами церия BaY2F 8:Ce3+, дополнительно введены ионы иттербия и лютеция в концентрации 0,5-5,0 ат.% и 1-5 ат.%, соответственно. Это позволяет уменьшить коэффициент потерь (коэффициент поглощения центров окраски) в области длин волн 300-400 нм, наведенных излучением накачки, в 1,5-2,7 раза, а также реализовать эффект лазерной генерации на межконфигурационных 5d-4f переходах ионов Ce 3+ в кристаллах BaY2F8. 2 ил. |
2369670 патент выдан: опубликован: 10.10.2009 |
|
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКОГО МАТЕРИАЛА ДЛЯ КВАНТОВОЙ ЭЛЕКТРОНИКИ НА ОСНОВЕ КРИСТАЛЛОВ ДВОЙНЫХ ФТОРИДОВ
Изобретение относится к технологии выращивания кристаллов и может быть использовано при создании активированных кристаллических материалов с прогнозируемыми свойствами для нужд фотоники, квантовой электроники и оптики. Оптический материал на основе кристаллов двойных фторидов структуры шеелита получают путем выращивания кристаллов из расплава ингредиентов LiF, YF3, LuF 3, LnF3, где Ln - трехвалентные ионы цериевой подгруппы ряда лантаноидов, при этом в шихту для приготовления расплава вводят фторид лютеция в количестве от 50 мол.% до 90 мол.% по отношению к фториду иттрия. Изобретение позволяет получать кристаллы с повышенным коэффициентом распределения трехвалентных редкоземельных ионов цериевой подгруппы. 1 табл., 2 ил. |
2367731 патент выдан: опубликован: 20.09.2009 |
|
ЛАЗЕРНОЕ ВЕЩЕСТВО
Изобретение относится к области материалов электронной техники и может найти применение при создании новых устройств фотоники, квантовой электроники и оптики УФ-диапазона спектра. Лазерное вещество на основе кристалла фторидов лития и лютеция, активированного трехвалентными ионами церия, дополнительно содержит фториды иттрия и иттербия в соответствии с химической формулой LiLu1-xYxYbyF4:Ce, где х=0,5-0,8, у=0-0,05. Изобретение позволяет уменьшить влияние эффекта соляризации активной среды под действием излучения накачки на ее лазерные характеристики, расширить диапазон перестройки частоты лазерной генерации, увеличить концентрацию ионов церия в кристаллах лития-лютеция и значение удельного съема энергии лазерного излучения. 1 табл., 3 ил. |
2362844 патент выдан: опубликован: 27.07.2009 |
|
КВАЗИТРЕХУРОВНЕВЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР И СПОСОБ ЕГО РАБОТЫ
Изобретение относится к области твердотельных лазеров, в частности к лазерам с лазерной диодной накачкой, и промышленно применимо в медицине и косметологии. Техническим результатом изобретения является повышение надежности лазера, увеличение ресурса его работы и повышение средней мощности излучения. Квазитрехуровневый твердотельный лазер содержит лазерный диод, активный элемент, устройство фокусировки излучения лазерного диода в активный элемент и резонатор лазера, при этом лазер содержит датчик температуры лазерного диода, блок управления током и температурой лазерного диода, электрически связанный с лазерным диодом, блоком термостабилизации и датчиком температуры лазерного диода, причем блок управления лазерного диода выполнен с возможностью одновременного варьирования тока и температуры лазерного диода. При осуществлении способа работы квазитрехуровневого твердотельного лазера через лазерный диод пропускают ток, излучение лазерного диода фокусируют внутри активного элемента, расположенного между входным и выходным зеркалами, затем отражают от выходной поверхности активного элемента; излучение, испускаемое активным элементом, пропускают через входную и выходную поверхности активного элемента, причем излучение, падающее на выходное зеркало резонатора, частично попускают через него, при этом ослабляют излучение лазерного диода, отраженное от элементов лазера, а во время переходных процессов, связанных с включением лазерного диода или изменения мощности его излучения, ток через лазерный диод изменяют таким образом, чтобы длина волны излучения лазерного диода совпадала с центром линии поглощения активного элемента лазера. 2 н. и 32 з.п. ф-лы, 4 ил. |
2360341 патент выдан: опубликован: 27.06.2009 |
|
КЕРАМИЧЕСКИЙ ЛАЗЕРНЫЙ МИКРОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ С ДВОЙНИКОВОЙ НАНОСТРУКТУРОЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
Изобретение относится к кристаллическим неорганическим материалам, которые могут использоваться в оптической технике. Лазерный материал представляет собой керамическое поликристаллическое микроструктурированное вещество с размером зерен 3-100 мкм, включающее двойниковую наноструктуру внутри зерен размером 50-300 нм, выполненное из галогенидов щелочных, щелочноземельных и редкоземельных металлов или их твердых растворов, имеющее вакансионные или примесные лазерно-активные центры с концентрацией 1015-10 21 см-3. Способ включает термомеханическую обработку монокристалла, выполненного из галогенидов металлов, и охлаждение, при этом термомеханическую обработку осуществляют до степени деформации монокристалла 55-90%, при температуре текучести выбранного монокристалла, с получением керамического поликристаллического микроструктурированного вещества, характеризующегося размером зерен кристаллов 3-100 мкм и включающего двойниковую наноструктуру внутри зерен размером 50-300 нм. Материал обладает улучшенными механическими свойствами: повышенными микротвердостью и вязкостью разрушения. 2 н. и 3 з.п. ф-лы, 1 табл., 1 ил. |
2358045 патент выдан: опубликован: 10.06.2009 |
|
ИНФРАКРАСНАЯ ЛАЗЕРНАЯ МАТРИЦА НА ОСНОВЕ КРИСТАЛЛОВ КАЛИЯ И РУБИДИЯ ПЕНТОБРОМПЛЮМБИТА
Изобретение относится к получению и использованию новой инфракрасной лазерной матрицы для инфракрасной оптики. Предлагается инфракрасная лазерная матрица на основе кристаллов калия и рубидия пентобромплюмбита, которые описываются формулой КXRb1-XPb2Br5, где х изменяется в диапазоне 0,2 х 0,5. Полученные кристаллы характеризуются высокой прозрачностью, не рассеивают лазерное излучение, обладают низкими энергиями колебания кристаллической решетки и имеют высокий коэффициент внедрения РЗЭ в матрицу, что обеспечивает возможность реализации лазерного излучения в среднем ИК-диапазоне вплоть до 10 мкм. 5 ил. |
2354762 патент выдан: опубликован: 10.05.2009 |
|
ХОЛЕСТЕРИЧЕСКАЯ ФОТОАКТИВНАЯ КОМПОЗИЦИЯ ДЛЯ ГЕНЕРАЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Изобретение относится к области полимерных холестерических фотоактивных композиций, способных под действием облучения лазерным светом самостоятельно генерировать лазерное излучение. Такая композиция может найти применение, например, в фотонике, оптоэлектронике и системах телекоммуникаций. Описывается холестерическая фотоактивная композиция для генерации лазерного излучения, состоящая из холестерического жидкого кристалла, фотоактивной добавки и лазерного красителя, при этом в качестве жидкого кристалла она содержит сополимер n-(6-акрилоилоксикапроилоксифенил)-n-метоксибензоата с холестерин-11-акрилоилундеканоатом, содержащий от 30 до 35 мол.% звеньев холестерин-11-акрилоилундеканоата, в качестве фотоактивной добавки - 2,5-бис(4-метоксициннамоил)-1,4; 3,6-диангидро-O-сорбитол, а в качестве лазерного красителя - 4-(дицианометилен)-2-метил-6-(4-диметиламиностирил)-4Н-пиран. Изобретение позволяет повысить временную и улучшить термическую стабильность композиций, включая возможность ее использования при комнатной и более низких температурах, а также понизить чувствительность композиции к внешним воздействиям. 1 ил. |
2325421 патент выдан: опубликован: 27.05.2008 |
|
СЕРИЙНЫЙ СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ГАЛЛИЙ-СКАНДИЙ-ГАДОЛИНИЕВЫХ ГРАНАТОВ ДЛЯ ПАССИВНЫХ ЛАЗЕРНЫХ ЗАТВОРОВ
Изобретение относится к технологии выращивания кристаллов для пассивных лазерных затворов, используемых в современных лазерах, работающих в ИК-области спектра. Серийный способ выращивания кристаллов галлий-скандий-гадолиниевых гранатов осуществляют методом Чохральского из расплава исходной шихты, представляющей собой полученный методом твердофазного синтеза галлий-скандий-гадолиниевый гранат конгруэнтно плавящегося состава с добавками оксида магния и оксида хрома, обеспечивающими концентрацию катионов хрома и магния в расплаве при выращивании первого кристалла по 2,0×l0 20-2,6×l020 атомов/см 3, при давлении в камере 1,3-2,0 атм в среде аргона и углекислого газа с объемной долей последнего в газовой смеси 14-17%, причем при втором, третьем и последующих выращиваниях в тигель добавляют количество исходной шихты, равное весу предыдущего кристалла, состав которой в части катионов хрома и магния определяют по формуле (CCr×СMg )/1020=0,5÷2 при С Cr не менее 5×1019 атомов/см 3. Полученные из выращенных кристаллов пассивные лазерные затворы обеспечивают необходимый режим модуляции добротности в непрерывном и импульсном режимах работы в диапазоне длин волн 1,057-1,067 мкм. |
2324018 патент выдан: опубликован: 10.05.2008 |
|
СПОСОБ ИЗГОТОВЛЕНИЯ ЛАЗЕРНОГО ТВЕРДОТЕЛЬНОГО ЭЛЕМЕНТА (ВАРИАНТЫ)
Способ изготовления лазерного твердотельного элемента включает создание пористой тетраэтоксисилановой матрицы методом золь-гель синтеза при следующем соотношении компонентов в исходной реакционной смеси, об.%: тетраэтоксисилан 30-33, вода 24-27, азотная кислота (конц.) 2-3, формамид 16-18, этанол остальное до 100, которую после гидролиза разливают при комнатной температуре в прямоугольные нейтральные кюветы, каждую закрывают нейтральной пленкой вначале герметично. Через 2-3 дня в пленке выполняют отверстия для испарения жидких продуктов реакционной смеси, полученный гель сушат в течение 1-3 недель при 40°С до образования твердой пористой матрицы. Затем матрицу подвергают термообработке путем нагрева со скоростью 30°С/час от комнатной температуры до 600°С и последующего охлаждения со скоростью 50°С/час до комнатной температуры. Первый вариант - когда после термообработки пористой матрицы готовят золь-раствор винилтриэтоксисилана при следующем соотношении компонентов, об.%: винилтриэтоксисилан 52-54, 0,5% водный раствор концентрированной соляной кислоты 15-17, этанол остальное до 100, после прохождения стадии гидролиза в золь-раствор добавляют краситель родамин 101T в количестве 0.51-0.52 г/л, и полученную смесь вводят методом пропитки в поры изготовленной тетраэтоксисилановой матрицы, помещая матрицу в емкость с полученной смесью. Емкость закрывают нейтральной пленкой с небольшими отверстиями, затем проникший в поры и оставшийся снаружи матрицы окрашенный золь-раствор подвергают поликонденсации и сушке при комнатной температуре в течение 2-3 недель. В определяемый визуально момент начальной стадии затвердения окружающей матрицу смеси матрицу из нее извлекают, ее поверхность очищают механически и с помощью этанола и высушивают при 40°С в течение 23-25 час, после чего процессы пропитки полученной матрицы окрашенным золь-раствором, поликонденсации, извлечения матрицы из смеси, очистки и сушки повторяют еще раз. Во втором варианте после прохождения стадии гидролиза в золь-раствор добавляют краситель феналемин 512 в количестве 0.34-0.35 г/л и полученную смесь вводят методом пропитки в поры изготовленной тетраэтоксисилановой матрицы. Технический результат - увеличение КПД и генерационной фотостабильности, определяющей ресурс работы лазерного твердотельного элемента. 2 н.п. ф-лы. |
2321928 патент выдан: опубликован: 10.04.2008 |
|
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ГАЛЛИЙ-СКАНДИЙ-ГАДОЛИНИЕВЫХ ГРАНАТОВ ДЛЯ ПАССИВНЫХ ЛАЗЕРНЫХ ЗАТВОРОВ
Изобретение относится к технологии выращивания кристаллов для пассивных лазерных затворов, используемых в современных лазерах, работающих в ИК-области спектра. Кристаллы выращивают методом Чохральского из расплава исходной шихты, содержащей смесь оксидов металлов, в качестве которых используют полученный методом твердофазного синтеза галлий-скандий-гадолиниевый гранат конгруэнтно плавящегося состава с добавками оксида магния и оксида хрома, обеспечивающими концентрацию катионов хрома и магния в расплаве по 2,0×10 20-2,6×1020 атомов/см 3. Процесс осуществляют при давлении в камере 1,4 атм в среде аргона и углекислого газа с объемной долей последнего в газовой смеси 14-17%. Изобретение позволяет выращивать совершенные кристаллы галлий-скандий-гадолиниевых гранатов, легированные катионами хрома, с коэффициентом поглощения более 5 см -1 в диапазоне генерации длин волн 1,057-1,067 мкм, обеспечивающих на затворах необходимый режим модуляции добротности в непрерывном и импульсном режимах работы. |
2321689 патент выдан: опубликован: 10.04.2008 |
|
ЛАЗЕРНАЯ ФТОРИДНАЯ КЕРАМИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ
Изобретение относится к области технологии оптических лазерных материалов, используемых в качестве оптической среды для передачи, генерации и преобразования фотонного излучения с различной частотой и мощностью оптических сигналов. Исходная смесь из фторидов металлов содержит основу в виде одного или нескольких фторидов из группы щелочноземельных металлов и легирующую добавку, способную образовать с основой гомогенный твердый раствор со структурой флюорита, при мольном соотношении 50-99/50-1, при этом исходная смесь содержит компоненты с введенным в них избытком фтор-иона. Способ получения лазерной фторидной керамики включает горячее прессование исходной смеси измельченных фракций фторидов щелочноземельных и редкоземельных металлов с использованием активной фторирующей среды. Фторирующие агенты получают путем их газообразного высвобождения при разложении исходных компонентов в условиях предварительного вакуумирования и нагрева. Используют исходную смесь, содержащую указанный выше состав. Горячее прессование проводят при температуре не менее 900°С. Дополнительное фторирование шихты проводят с помощью подаваемого извне газообразного CF4. Технический результат заключается в создании высокопрозрачного лазерного материала, пригодного для передачи, генерации и преобразования фотонного излучения с различной частотой и мощностью оптических сигналов, в том числе недостижимых для монокристаллов. 2 н. и 3 з.п. ф-лы, 1 табл. |
2321120 патент выдан: опубликован: 27.03.2008 |
|
ПЛЕНОЧНЫЙ ЛАЗЕРНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Использование: в области лазерной техники для создания перестраиваемых лазеров, используемых в линиях волоконно-оптической связи, оптоэлектронике и спектроскопии. Техническим результатом изобретения является создание химически стойкого негигроскопичного пленочного лазерного материала, обладающего улучшенной химической стойкостью, а также высокими значениями времени жизни и квантового выхода фотолюминесценции. Сущность изобретения: пленочный лазерный материал на основе вольфрамтеллуритного стекла, активированный ионами Er3+, выполнен в виде пленки и нанесен на подложку из плавленого кварца методом ВЧ-магнетронного распыления. Распыляют мишень, содержащую оксиды ТеО2 , WO3, Er2О3, причем мишень распыляют на подложку, нагретую до температуры 250÷350°С, в атмосфере газовой смеси аргона и кислорода, а после нанесения пленки ее отжигают в кислороде при температуре 330÷390°С. 2 н. и 4 з.п. ф-лы, 2 ил., 1 табл. |
2271593 патент выдан: опубликован: 10.03.2006 |
|
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР НА КРАСИТЕЛЕ
Твердотельный лазер на красителе с распределенной обратной связью включает усилительную среду, находящуюся, по существу, в твердом состоянии, в которой имеется примесь флуоресцентного красителя, выполненную плоской в той части ее, которая предназначена для приема света от устройства накачки, и имеющую периодическую структуру, изменяющуюся в направлении, нормальном к указанной плоской части. Лазер содержит средство определения местоположения, выполненное с возможностью установки местоположения и ориентации усилительной среды по отношению к устройству накачки. Усилительная среда излучает в направлении, нормальном к указанной плоской части. Периодическая структура может содержать множество дискретно расположенных слоев, обладающих оптическими свойствами, которые периодически изменяются по отношению друг к другу. Структура содержит слои холестерического жидкого кристалла. Лазер может содержать основу в виде ленты, диска или карточки. Обеспечивается простота и безопасность при использовании и уменьшение влияния окружающей среды, а также исключается фотодеградация лазерного красителя. 3 н. и 58 з.п. ф-лы, 21 ил.
|
2239922 патент выдан: опубликован: 10.11.2004 |
|
МАТРИЦА ЛАЗЕРНОГО МАТЕРИАЛА Изобретение относится к материалам, применяемым в квантовой электронике, в частности к монокристаллам, используемым в качестве матрицы для твердотельных лазеров с диодной накачкой. Матрица лазерного материала представляет собой смешанный ортоборат лантана и/или церия и скандия с химической формулой R1-xScxBO3, где R-La и/или Се, 0,9>х>0,5. Обеспечено получение матрицы лазерного материала с высокой степенью изоморфной емкости, достаточной для использования ее в качестве лазерного материала с высокой концентрацией ионов активаторов переходных и/или редкоземельных металлов. 1 табл. | 2231881 патент выдан: опубликован: 27.06.2004 |
|
ЛАЗЕРНЫЙ МАТЕРИАЛ Изобретение относится к материалам, применяемым в квантовой электронике, в частности к монокристаллам для высокоэффективных твердотельных лазеров с диодной накачкой, излучающих в диапазоне 1,06 мкм. Лазерный материал на основе ортоборатов редкоземельных элементов и скандия, который имеет химическую формулу R1-x-yNdxScyBO3, где R-La и/или Се, 0,01<х<0,25; 0,5<у<0,9. Обеспечено получение лазерного материала с высокой концентрацией неодима и высоким оптическим качеством. 2 ил., 2 табл. | 2231187 патент выдан: опубликован: 20.06.2004 |
|
АКТИВНЫЙ ЭЛЕМЕНТ ТВЕРДОТЕЛЬНОГО ЛАЗЕРА Изобретение относиться к квантовой электронике и может быть использовано в лазерной технологии. Активный элемент твердотельного лазера содержит ионы активатора и ионы сенсибилизатора. Накачка осуществляется через боковую поверхность активного элемента в полосы поглощения активатора и сенсибилизатора излучением в ближнем инфракрасном, видимом или ближнем ультрафиолетовом диапазонах длин волн. Активный элемент имеет толщину L по направлению накачки z, 0zL, поперечное сечение S(z) и неоднородное по объему активной среды распределение концентраций ионов активатора и сенсибилизатора. Усредненные по поперечным сечениям S(z) концентрации активатора na и сенсибилизатора nc являются функциями координаты z, что позволяет управлять профилем поглощенной в активной среде энергии. При накачке активной среды одновременно в полосы поглощения и активатора, и сенсибилизатора удается получать выровненный по толщине активного элемента профиль, что позволяет увеличить запасенную в активной среде энергию и уменьшить наведенные накачкой термооптические искажения среды, что улучшает пространственно-угловые характеристики формируемого в среде лазерного пучка. Для создания среды с переменной концентрацией активатора и сенсибилизатора используется лазерная керамика, состоящая из микрогранул кристалла, содержащих только ионы активатора, и микрогранул, содержащих ионы активатора вместе с ионами сенсибилизатора. 2 з.п. ф-лы, 2 ил. | 2226732 патент выдан: опубликован: 10.04.2004 |
|
ЛАЗЕРНЫЙ МАТЕРИАЛ Использование: в качестве материалов, применяемых в квантовой электронике, в частности монокристаллов для компактных твердотельных лазеров с диодной накачкой, излучающих в диапазоне 1,5-1,6 мкм. Сущность изобретения: лазерный материал на основе смешанного ортобората, активированный ионами иттербия и эрбия, имеющий химическую формулу R1-x-y-zYbxEryScz,ВО3, где R - La и/или Се; 0,05<x0,18; 0,005<у0,1; 0,5<z<0,9. Техническим результатом изобретения является получение лазерного материала с высокой изоморфной емкостью и теплопроводностью, достаточными для получения лазерного излучения в диапазоне длин волн 1,5-1,6 мкм с выходной мощностью более 100 мВт. 1 з.п. ф-лы, 2 табл., 2 ил. | 2222852 патент выдан: опубликован: 27.01.2004 |
|
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКОГО ОКСИДА ЦИНКА С БЫСТРЫМ ИЗЛУЧЕНИЕМ В УЛЬТРАФИОЛЕТОВОЙ ОБЛАСТИ СПЕКТРА Использование: в области оптоэлектроники, ядерно-физических исследований, при изготовлении мощных твердотельных лазеров, работающих в УФ-области спектра, в геологии, в химии чистых и сверхчистых элементов, соединений. Сущность предлагаемого способа заключается в том, что монокристаллы и эпитаксиальные слои ZnO в процессе выращивания путем осуществления окислительно-восстановительной транспортной реакции в водороде с давлением 1,4-2,0 атм, содержащем пары воды больше 13% в присутствии галлия в пределах концентраций 0,4-6 ат.%, при температуре зоны подложки (затравки) Т1=770-940 К и температуре зоны тигля (источника) T2=990-1020 К отжигают, при этом отжиг проводят на воздухе или в кислороде атмосферного давления при температуре Т= 970-1020 К в течение времени t40 мин, а затем его выдерживают в водороде с давлением р= 1,8 атм при температуре 820 К в течение времени t10 мин. Изобретение позволяет получать монокристаллический ZnO с высокой степенью прозрачности. Люминесцентное излучение получаемых образцов ZnO:Ga:Н находится в пределах спектральной полосы 360-410 нм со временем флюоресценции меньше 10-8 с. 2 ил. | 2202010 патент выдан: опубликован: 10.04.2003 |
|
ЛАЗЕР С ВЕРТИКАЛЬНЫМ РЕЗОНАТОРОМ И ВЫВОДОМ ИЗЛУЧЕНИЯ ЧЕРЕЗ ПОВЕРХНОСТЬ, НАБОР ЛАЗЕРОВ И СПОСОБ ПОВЫШЕНИЯ КПД ЛАЗЕРНОГО УСТРОЙСТВА Изобретение относится к лазерной технике. В устройстве и способе генерирования мощного лазерного излучения геометрия лазерного резонатора определяет основную пространственную или поперечную резонаторную моду. Внутри резонатора расположена усиливающая среда, и источник энергии активизирует усиливающую среду в пределах первого объема. Это вызывает спонтанное и вынужденное испускание энергии, распространяющееся в усиливающей среде в направлении, поперечном основной резонаторной моде. Это поперечное испускание энергии, в свою очередь, накачивает второй объем усиливающей среды, расположенный вокруг первого объема. Когда интенсивность испускания достаточно высока, во втором объеме создаются инверсия и усиление. За счет оптимизации геометрии резонатора таким образом, чтобы основная резонаторная мода проходила как через первый, так и через второй объемы, окружая первый накачиваемый объем, поперечно направленная энергия первого объема, которая иначе была бы потеряна, захватывается основным лучом, что повышает общий энергетический КПД лазера. Технический результат изобретения: упрощение конструкции лазера с вертикальным резонатором. 3 с. и 22 з.п.ф-лы, 5 ил. | 2190910 патент выдан: опубликован: 10.10.2002 |
|