вихревой аппарат

Классы МПК:B04C5/081 форма или размеры 
Автор(ы):,
Патентообладатель(и):Дальневосточный внедренческий научно-производственный центр "Минерал"
Приоритеты:
подача заявки:
1991-12-10
публикация патента:

Использование: при обогащении полезных ископаемых, в частности при промывке золото- и платиносодержащих песков. Сущность изобретения: в вихревом аппарате, включающем цилиндрический корпус 1, вихревую камеру 2, набор кольцевых мембран 3, выполненных в виде усеченных корпусов, расширяющихся вверх, одинакового или различного диаметра нижнего основания конуса, внутренний диаметр нижнего конуса выполняют равным или большим внутреннего диаметра выходного сопла вихревого канала (камеры 2). Мембраны 3 установлены концентрично при необходимости получения нескольких продуктов обогащения. Для повышения эффективности процесса разделения под вихревой камерой 2 установлено коническое разгрузочное устройство. 2 з.п. ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. ВИХРЕВОЙ АППАРАТ для разделения дисперсных материалов, включающий цилиндрический корпус с устройством для ввода гидросмеси и разгрузочными устройствами для вывода разделенных фракций, кольцевую мембрану, установленную над разгрузочным отверстием вихревого канала с возможностью осевого перемещения, отличающийся тем, что кольцевая мембрана выполнена в виде усеченного конуса, расширяющегося вверх с внутренним диаметром нижнего основания конуса, равным или большим внутреннего диаметра выходного сопла вихревого канала.

2. Аппарат по п. 1, отличающийся тем, что он снабжен дополнительными концентрично установленными мембранами в виде усеченного конуса, расширяющегося вверх, одинакового или различного диаметра нижнего основания конуса.

3. Аппарат по пп.1 и 2, отличающийся тем, что под вихревой камерой дополнительно установлено коническое разгрузочное устройство.

Описание изобретения к патенту

Изобретение относится к обогащению полезных ископаемых и может найти применение при промывке золото- и платиносодержащих песков.

Известен вихревой аппарат для разделения дисперсных материалов в вихревом потоке, содержащий цилиндроконический корпус, патрубок тангенциального ввода, песковый и сливной патрубки, расположенные по оси корпуса [1]

Недостатками данного аппарата являются низкая эффективность разделения дисперсных материалов по плотности и незначительная степень сокращения обогащаемого материала.

Известен также вихревой аппарат для разделения дисперсных материалов в вихревом потоке [2] Аппарат содержит цилиндроконический корпус с тангенциальным входным патрубком, песковый и сливной патрубки и трубку, расположенную по оси корпуса.

Недостатками данного аппарата являются ограниченный интервал разделения дисперсных материалов с различными удельными весами и высокое гидродинамическое сопротивление.

Наиболее близким к изобретению по технической сущности и достигаемому результату является вихревой аппарат для разделения дисперсных материалов в вихревом потоке, содержащий цилиндрический корпус с устройством для ввода гидросмеси и разгрузочными устройствами для вывода разделенных фракций, кольцевую мембрану, установленную над разгрузочным отверстием вихревого канала с возможностью осевого перемещения [3]

Недостатками этого аппарата является недостаточно высокая эффективность разделения дисперсных материалов ввиду выноса тяжелых и крупных фракций обратным потоком в сливную зону.

Техническим результатом изобретения является повышение эффективности процесса разделения гидросмеси.

Результат достигается тем, что вихревой аппарат для разделения дисперсных материалов содержит цилиндрический корпус, устройства для ввода гидросмеси и разгрузочные устройства для вывода разделенных фракций, кольцевую в виде усеченного конуса мембрану с внутренним диаметром, равным или больше внутреннего диаметра выходного сопла вихревого канала.

Для получения нескольких продуктов обогащения разделение происходит на ряде дополнительных, концентрично установленных мембран в виде усеченного конуса, расширяющегося вверх, одинакового или различного диаметра нижнего основания конуса.

Для повышения эффективности процесса под вихревой камерой дополнительно установлено коническое разгрузочное устройство.

При прохождении гидросмеси в цилиндрическом корпусе выходного сопла наиболее тяжелые и крупные частицы под действием центробежной силы и силы тяжести перемещаются в пристенную область и затем при выходе из цилиндрического корпуса под действием центробежной силы и силы тяжести приобретают более крутые траектории, чем легкие и мелкие частицы. Разделение частиц происходит с помощью мембраны, помещенной в поток, выходящий из цилиндрического корпуса. В данном аппарате отсутствует снижающаяся коническая область, в которой происходит перемещение находящегося у стенок материала, и это приводит к выносу тяжелых и крупных частиц в сливную зону, что снижает эффективность разделения.

На фиг. 1 представлен предлагаемый вихревой аппарат; на фиг.2 и 3 набор мембран одинакового размера и концентрично установленных мембран разного размера; на фиг. 4 аппарат с дополнительным коническим разгрузочным устройством.

Аппарат содержит цилиндрический корпус 1, вихревую камеру 2, кольцевую мембрану 3, патрубок 4 вывода гидросмеси с тяжелыми и крупными частицами, патрубок 5 вывода гидросмеси с легкими и мелкими частицами, патрубок 6 тангенциального ввода, механизм 7 осевого перемещения мембраны 7. Для необходимости получения нескольких продуктов обогащения предусмотрены дополнительные концентрично установленные мембраны в виде усеченного конуса, расширяющегося вверх, одинакового или различного диаметра нижнего основания конуса (фиг.2 и 3). Кольцевая мембрана 3 имеет внутренний диаметр нижнего основания конуса, равный или больший внутреннего диаметра выходного сопла вихревого канала (камеры 2).

Под вихревой камерой 2 может быть дополнительно установлено коническое разгрузочное устройство 8 (фиг.4).

Аппарат работает следующим образом.

Гидросмесь подается через тангенциальный подвод 6 в вихревую камеру 2, где приобретает вращательное движение. Наиболее тяжелые и крупные частицы под действием центробежных сил и сил тяжести перемещаются вблизи стенок по круговым траекториям, постепенно приближаясь к месту разгрузки из выходного сопла цилиндрического корпуса 1. При сходе частиц с кромки сопла цилиндрического корпуса 1 частицы приобретают различные траектории. Тяжелые и крупные частицы движутся по более крутым траекториям и отделяются от легких и мелких частиц с помощью мембраны 3. Пульпа с тяжелыми и крупными частицами разгружается через разгрузочный патрубок 4, пульпа с легкими и мелкими частицами через разгрузочный патрубок 5. Оптимизацию режима разделения частиц осуществляют путем изменения положения мембраны посредством механизма 7 ее перемещения.

Примеры реализации аппарата.

П р и м е р 1. Обогащение касситеритсодержащего кварцевого песка.

Взята навеска кварцевого песка 10 кг крупностью -250+100 мкм с содержанием касситерита 10% Удельный вес кварцевого песка 2500 кг/м3, удельный вес касситерита 7300 кг/м3. Разделение производилось на предложенном аппарате при отношении Ж: Т 10:1. Извлечение касситерита в концентрат составило 75% при степени сокращения равной 10.

П р и м е р 2. Взят материал крупностью -100+70 мкм из касситерита плотностью 7,2 т/м3 с содержанием 6% и кварца плотностью 2,7 т/м3 с содержанием 94% Вес навески составлял 5 кг. Разделение материала по плотности производилось в вихревом аппарате. Получен концентрат с содержанием касситерита 39,2% при выходе концентрата 10% и извлечении 65,3% Степень сокращения равна 10.

П р и м е р 3. Разделение частиц по крупности.

Взята навеска кварцевого песка в количестве 10 кг крупностью -200+100 мкм. Разделение проведено на предложенном аппарате. Получено 6 кг песка с размерами частиц 200+150 мкм и 4 кг песка с размерами частиц -150+100 мкм.

П р и м е р 4. Реализация способа классификации материала по крупности. Взят кварцевый песок крупностью -200+100мкм в количестве 10 кг. Разделение материала по крупности производилось в предложенном аппарате. Получено 2 продукта: 7 кг песка крупностью -200+150 мкм и 3 кг песка крупностью -150+100 мкм.

Для сравнения были проведены серии экспериментов по разделению аналогичных материалов на гидроциклоне ГЦ-75 с одинаковой скоростью ведения процесса, что и в предлагаемом аппарате. Максимальное извлечение касситерита при использовании ГЦ-75 составило 50% при степени сокращения 6.

Использование предложенного вихревого аппарата для разделения дисперсных материалов в вихревом потоке позволяет повысить эффективность процесса: извлечение тяжелых и крупных зерен в концентрат возрастает на 10-25% степень сокращения увеличивается в 1,5 раза. При необходимости получения нескольких продуктов обогащения с различной плотностью и размерами можно использовать ряд последовательно установленных мембран одинакового размера или ряд концентрично установленных мембран различных размеров.

С целью повышения эффективности процесса под вихревой камерой дополнительно может быть установлено коническое разгрузочное устройство.

Таким образом, предложенный вихревой аппарат позволяет существенно повысить эффективность процесса разделения, получать несколько продуктов обогащения и расширить диапазон крупности обогащаемого материала.

Класс B04C5/081 форма или размеры 

гидроциклон с криволинейной образующей внутренней поверхности (варианты) -  патент 2488447 (27.07.2013)
гидроциклон-флотатор -  патент 2433000 (10.11.2011)
вихревой центробежный реактор -  патент 2305581 (10.09.2007)
циклонный пылеуловитель и пылесос, содержащий циклонный пылеуловитель -  патент 2302908 (20.07.2007)
циклон для осаждения диоксида титана из пылегазового потока -  патент 2291002 (10.01.2007)
циклон -  патент 2135300 (27.08.1999)
центробежный сепаратор и способ отделения частиц от горячего газа -  патент 2134146 (10.08.1999)
центробежный сепаратор в сосуде высокого давления (варианты) -  патент 2107541 (27.03.1998)
высокоэффективный гидроциклонный аппарат для отделения жидких компонентов с различными величинами плотности от смеси текучих сред -  патент 2074032 (27.02.1997)
Наверх