дроссель

Классы МПК:H01F38/02 для нелинейного режима работы
H01F1/14 металлы или сплавы
Автор(ы):, , , ,
Патентообладатель(и):Научно-производственное предприятие "Гамма"
Приоритеты:
подача заявки:
1992-10-20
публикация патента:

Использование: в металлургии, а именно в магнитных сплавах, для дросселей помехоподавляющих фильтров. Сущность изобретения: в качестве магнитного материала сердечника устройства используются аморфные сплавы, обладающие высокой индукцией насыщения и положительной константой магнитострикции. Сплавы на основе железа могут содержать компоненты при следующем соотношении: один или несколько компонентов из группы, содержащей Mn, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf в количестве 0,1 - 15 ат.%, один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15 - 30 ат.%, или один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15 - 30 ат. %, Co и/или Ni в количестве 0,1 - 30 ат.%, один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15 - 30 ат.%. Объемная доля кристаллической фазы в аморфной ленте не должна превышать 50%. Близкой к оптимальному является объемная доля кристаллитов 0,1 - 10%, причем кристаллиты должны быть распределены в поверхностном слое лент магнитного сплава. При локализации кристаллитов в поверхностном слое аморфной ленты возникают плоскостные напряжения, которые более эффективно сглаживают кривую намагничивания при сохранении высокого уровня магнитной проницаемости. 5 з.п. ф-лы, 1 ил., 2 табл.
Рисунок 1, Рисунок 2

Формула изобретения

1. ДРОССЕЛЬ, состоящий из одного или нескольких витых сердечников и одной или нескольких обмоток, отличающийся тем, что сердечник изготовлен из магнитного сплава с частично кристаллизованной аморфной структурой, причем объемная доля кристаллической фазы не превышает 50% а в межвитковом пространстве сердечника находится отвердевший неорганический клей.

2. Дроссель по п. 1, отличающийся тем, что магнитный сплав содержит компоненты при следующем соотношении, ат.

Один или несколько компонентов из группы, содержащей марганец, хром, молибден, вольфрам, ванадий, ниобий, тантал, цирконий, гафний 0,1 15,0

Один или несколько компонентов из группы, содержащей кремний, бор, углерод, фосфор 15 30

Железо Остальное

3. Дроссель по п. 1, отличающийся тем, что магнитный сплав содержит компоненты при следующем соотношении, ат.

Один или несколько компонентов из группы, содержащей кремний, бор, углерод, фосфор 15 30

Один или два компонента из группы, содержащей кобальт и никель 0,1 - 30

Железо Остальное

4. Дроссель по п. 1, отличающийся тем, что магнитный сплав содержит компоненты при следующем соотношении, ат.

Один или несколько компонентов из группы, содержащей кремний, бор, углерод, фосфор 15 30

Железо Остальное

5. Дроссель по п.1, отличающийся тем, что кристаллическая фаза распределена в поверхностном слое ленты магнитного сплава, а ее объемная доля составляет 0,1 10%

6. Дроссель по п.1, отличающийся тем, что неорганическим клеем является клей на основе силиката натрия.

Описание изобретения к патенту

Изобретение относится к металлургии, а именно к магнитным сплавам для дросселей помехоподавляющих фильтров. Сердечники дросселей должны иметь высокое значение максимального магнитного поля, в пределах которого магнитная проницаемость практически не изменяется.

Известен дроссель, сердечник которого изготовлен из магнитомягкого феррита (1). Однако ферриты имеют низкую индукцию насыщения и невысокое максимальное магнитное поле. К недостаткам ферритов относится также нелинейность кривой намагничивания и, как следствие, непостоянство магнитной проницаемости при изменении величины магнитного поля. Кроме того, из-за низкой температуры Кюри дроссель, патент № 2038640 200оС ферриты имеют низкую температурную стабильность.

В дросселе (2), выбранном в качестве прототипа, сердечник изготовлен из аморфного сплава с положительной константой магнитострикции. После отжига сердечник пропитывают эпоксидной смолой и сушат при температуре не выше 150оС. За счет внутренних напряжений, создаваемых эпоксидной смолой, кривая намагничивания сердечника сглаживается. Пропитка эпоксидной смолой позволяет получить жесткий сердечник. Жесткий сердечник можно использовать без каркаса, что упрощает технологию изготовления дросселя. Недостатком дросселя-прототипа является достаточно большая нелинейность кривой намагничивания. Так, в области до 200 А/м магнитная проницаемость снижается в четыре раза, а в области до 800 А/м в десять раз. Кроме того, использование для пропитки сердечника органического клея не позволяет проводить конечную термообработку при высокой температуре, а это снижает температурную стабильность характеристик дросселя.

Указанные недостатки отсутствуют в дросселе, сердечник которого изготовлен из магнитного сплава с частично кристаллизованной аморфной структурой, а в межвитковом пространстве сердечника находится отвердевший неорганический клей. В таком сердечнике сжимающие напряжения в магнитном материале создают как кристаллиты, так и неорганический клей. При локализации кристаллитов в поверхностном слое аморфной ленты возникают плоскостные напряжения, которые более эффективно сглаживают кривую намагничивания при сохранении высокого уровня магнитной проницаемости. Неорганическим клеем пропитывают неотожженный сердечник. Отвердение клея при отжиге способствует стабилизации процесса кристаллизации аморфного сплава. Так как отвердение и кристаллизация протекают при высокой температуре, готовый сердечник имеет высокую температурную стабильность.

В качестве магнитного материала можно использовать аморфные сплавы, обладающие высокой индукцией насыщения и положительной константой магнитострикции. Сплавы на основе железа могут содержать компоненты при следующем соотношении: один или несколько компонентов из группы, содержащей Mn, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf в количестве 0,1-15 ат. один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15-30 ат. или один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15-30 ат. Со и/или Ni в количестве 0,1-30 ат. один или несколько компонентов из группы, содержащей Si, B, C, P в количестве 15-30 ат.

Объемная доля кристаллической фазы в аморфной ленте не должна превышать 50% В противном случае резко возрастает коэффициент прямоугольности петли магнитного гистерезиса сердечника. Близкой к оптимальному является объемная доля кристаллитов 0,1-10% причем кристаллиты должны быть распределены в поверхностном слое ленты магнитного сплава.

В качестве неорганического клея предпочтительно использовать клеи на основе силиката натрия (жидкое стекло), которые обладают хорошей адгезией к поверхности аморфной ленты.

Для испытаний готовили дроссели, состоящие из одного сердечника диаметром 32х20 мм и высотой 10 мм и одной обмотки с числом витков равным 6. Сердечники навивали из аморфного магнитного сплава Fe77Ni1Si9B13 и пропитывали водным раствором силиката натрия с плотностью 1300 кг/м3. Затем проводили сушку при 90оС и окончательный отжиг при 450оС в течение 1 ч. На чертеже представлены зависимости дифференциальной магнитной проницаемости дроссель, патент № 2038640g, измеренной при частоте переменного тока 1000 Гц, от величины подмагничивающего поля Но для дросселей, изготовленных согласно изобретению (кривые 1 и 2). Для сравнения приведены данные для дросселя-прототипа (кривая 3), в котором пропитку проводили органическим клеем после отжига сердечника. Предлагаемый дроссель по сравнению с прототипом имеет большее значение максимального магнитного поля, в пределах которого дифференциальная магнитная проницаемость остается постоянной.

В табл.1 представлены результаты испытания дросселей, сердечники которых пропитаны силикатом натрия и отожжены при различных температурно-временных режимах. Приняты следующие обозначения: дроссель, патент № 2038640o начальная магнитная проницаемость, Br/Bs коэффициент прямоугольности, Нм максимальное магнитное поле. Из табл.1 следует, что с увеличением времени или температуры отжига растет объемная доля кристаллической фазы в аморфной матрице. При отсутствии кристаллической фазы (дроссель 1) коэффициент прямоугольности петли магнитного гистерезиса превышает 0,1. Также коэффициент прямоугольности растет при избыточном объеме кристаллической фазы. Несмотря на то, что максимальное магнитное поле в дросселях 4 и 5 превышает 1000 А/м, большая величина остаточной намагниченности приводит к значительной нелинейности кривой намагничивания. Оптимальным является присутствие в аморфном сплаве небольшой доли кристаллической фазы.

В табл.2 приведены примеры использования различных сплавов для изготовления дросселей. Отжиг сердечников после пропитки водным раствором силиката натрия проводили по оптимальным режимам для каждого сплава. Из табл.2 следует, что в качестве магнитного материала сердечников фильтров пригодна большая группа аморфных сплавов на основе железа.

Класс H01F38/02 для нелинейного режима работы

трехфазный токоограничивающий реактор для устройства плавного пуска электродвигателя -  патент 2398301 (27.08.2010)
токоограничивающий реактор -  патент 2349980 (20.03.2009)
трехфазный электрический реактор с подмагничиванием -  патент 2340975 (10.12.2008)
электрический реактор с подмагничиванием -  патент 2310940 (20.11.2007)
электромагнитный экран для реактора без ферромагнитного сердечника -  патент 2304815 (20.08.2007)
дроссель с составным сердечником, имеющий нелинейную характеристику, и индуктивная входная цепь -  патент 2303827 (27.07.2007)
электрический управляемый подмагничиванием реактор -  патент 2231153 (20.06.2004)
электрический реактор -  патент 2231152 (20.06.2004)
управляемый шунтирующий реактор -  патент 2221297 (10.01.2004)
электрический реактор с подмагничиванием -  патент 2217831 (27.11.2003)

Класс H01F1/14 металлы или сплавы

Наверх