способ получения анизотропных постоянных магнитов на основе сплава редкоземельный металл-железо-бор
Классы МПК: | H01F1/032 содержащие магнитно-твердые материалы |
Автор(ы): | Шангуров Алексей Викторович, Уймин Михаил Александрович, Логинов Юрий Николаевич, Ермаков Анатолий Егорович, Герасимов Александр Сергеевич |
Патентообладатель(и): | Шангуров Алексей Викторович, Уймин Михаил Александрович, Логинов Юрий Николаевич, Ермаков Анатолий Егорович, Герасимов Александр Сергеевич |
Приоритеты: |
подача заявки:
1992-08-05 публикация патента:
20.11.1995 |
Сущность изобретения: способ предполагает отливку цилиндрических заготовок, их нагрев, деформацию путем осадки вдоль образующей и последующий отжиг. Осадку ведут при температуре 600 800°С до достижения отношения диаметра заготовки к ее высоте в пределах 12 16. Достигается повышение скорости и производительности процесса. 2 табл.
Рисунок 1
Формула изобретения
СПОСОБ ПОЛУЧЕНИЯ АНИЗОТРОПНЫХ ПОСТОЯННЫХ МАГНИТОВ НА ОСНОВЕ СПЛАВА РЕДКОЗЕМЕЛЬНЫЙ МЕТАЛЛ-ЖЕЛЕЗО-БОР, включающий отливку цилиндрических заготовок, нагрев, деформацию путем осадки вдоль образующей и последующий отжиг, отличающийся тем, что осадку ведут при 600 800oС до достижения отношения диаметра заготовки к ее высоте в пределах 12 16.Описание изобретения к патенту
Изобретение относится к области металлургии прецизионных сплавов, а точнее к способам производства высококоэрцитивных материалов на основе сплава РЗМ-Fe-B (РЗМ редкоземельный металл, например неодим, празеодим). Известно, что наиболее высокие значения магнитной энергии получены у материалов на основе сплава РЗМ-Fe-B. Проводятся интенсивные исследования, направленные на создание эффективных промышленных технологий производства магнитов из таких сплавов. Для получения высоких магнитных характеристик в сплаве этого типа необходимо создание определенной микроструктуры определенного фазового состава. Одним из методов получения такой структуры является закалка металла с высокими скоростями охлаждения. Реально последнее достигается охлаждением частиц расплава с получением порошков или гранул, которые впоследствии компактируют в изделия заданной формы. С целью дальнейшего повышения магнитных характеристик применяют формование изделий в магнитном поле. Это позволяет получить анизотропные магниты с расположением оси легкого намагничивания в заданном направлении. Недостатком способов, реализующих принцип компактирования порошков, является сложность технологического процесса, обусловленная физико-химическими особенностями сплава: сплав интенсивно окисляется на воздухе даже при комнатной температуре и, если при хранении и переработке слитков окисление происходит лишь по их относительно небольшой поверхности, что легко может быть предотвращено, то для исключения окисления порошков, обладающих чрезвычайно большой суммарной поверхностью, вынуждены разрабатывать специальные меры, предотвращающие этот процесс (например, применение вакуума и защитных сред на всех этапах хранения и переработки). Особенную осторожность вынуждены проявлять при горячей обработке порошков, склонных к самовозгоранию и взрыву. В качестве прототипа выбран способ получения постоянных магнитов из сплава РЗМ-Fe-B, который предполагает отливку цилиндрических заготовок, их нагрев до 950оС, деформацию при этой температуре путем осадки вдоль образующей и последующий отжиг. Способ отличается тем, что приходится обрабатывать литые заготовки, а не порошковые, что несколько упрощает технологию и улучшает состояние охраны труда и экологии в производстве. Способ по прототипу позволяет получить магниты с довольно высоким уровнем магнитных характеристик, что обусловлено несколькими факторами: во-первых, при осадке формируется кристаллографическая текстура деформации, т.е. происходит выстраивание осей с основной фазы (являющихся осями легкого намагничивания) вдоль направления сжатия. Это приводит к повышению остаточной индукции Br. Дополнительное увеличение Br имеет место в результате перераспределения фаз в заготовке. Сплавы этого типа содержат, кроме основной ферромагнитной фазы, ряд немагнитных фаз, одна из которых плавится при температуре ниже температуры деформации (ее температура плавления 500-600оС). При горячей деформации происходит выжимание этой фазы к периферии заготовки, в результате чего удельный объем основной ферромагнитной фазы в центре заготовки увеличивается, что и обуславливает в свою очередь дополнительное повышение Br. Вторым фактором, влияющим уже на коэрцитивную силу Нс является изменение микроструктуры (размер зерен, толщина и состав межзеренных прослоек). Интенсивность выжимания жидкой фазы влияет и на Нс, так как при малом ее количестве может происходить рост зерен при отжиге и нарушении их магнитной изоляции, что приводит к снижению Нс. Осадку при температуре 950оС и степени деформации 80% в атмосфере аргона удалось осуществить при скоростях деформации 5




Класс H01F1/032 содержащие магнитно-твердые материалы