доплеровский измеритель составляющих вектора скорости, высоты и местной вертикали для вертолетов и космических аппаратов вертикальной посадки
Классы МПК: | G01S13/92 для измерения скорости G01S13/42 одновременное измерение дальности и других координат |
Автор(ы): | Фитенко В.В., Выдревич М.Б., Бирюков Ю.В., Чесалов В.П., Процеров В.И. |
Патентообладатель(и): | |
Приоритеты: |
подача заявки:
1995-09-11 публикация патента:
10.07.1997 |
Использование: устройства, предназначенные как для автономной навигации летательных аппаратов, так и для слепой посадки вертолетов и космических аппаратов на неподготовленную площадку. Сущность изобретения: устройство обеспечивает измерение составляющих вектора скорости от максимальных до нулевых и с переменой знака, измерение высоты от близкой к нулю до максимальной (потолка полета вертолета) и измерение наклона посадочной площадки относительно строительных осей летательного аппарата. В измерителе применены трех-четырехлучевые антенны, СВЧ-ЧМ передатчик, двухканальная радиочастотная головка, двухканальный широкополосный усилитель на частоте модуляции, цифровой узел определения допплеровской частоты и фазы дальности, синтезатор-синхронизатор и ряд других в основном вычислительных узлов. В узле определения допплеровской частоты и фазы дальности для выделения сигнала фазы использован способ, при котором входной сигнал разделяется на две составляющие: одну, образованную допплеровским смещением верхней боковой, и вторую, образованную допплеровским смещением нижней боковой излученного сигнала. Полученные составляющие перемножаются. Разделение сигналов происходит после фильтрации в блоке быстрого преобразования Фурье. В синтезаторе-синхронизаторе имеются элементы цифровой техники для формирования модулирующего и ряда других сигналов, что обеспечивает высокую точность привязки по фазе ряда сигналов к фазе модулирующего сигнала несмотря на наличие вобуляции частоты модуляции по ступенчатому-пилообразному закону. 2 з. п. ф-лы, 7 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7
Формула изобретения
1. Доплеровский измеритель составляющих вектора скорости, высоты и местной вертикали для вертолетов и космических аппаратов вертикальной посадки, содержащий многолучевые передающую и приемную антенны, соединенные с сигнальными соответственно выходами первого и входами второго коммутаторов лучей, управляющие входы которых подключены к выходу узла управления коммутаторами, частотно-модулированный СВЧ-передатчик, основной выход которого соединен с сигнальным входом первого коммутатора лучей, двухканальную радиочастотную головку, связанную одним из входов с выходом второго коммутатора, усилитель промежуточной частоты, электронно-вычислительную машину управления и контроля, соединенную параметрическими входами с выходами вычислителя, а выходами с входом ввода режима контроля узла управления коммутаторами и управляющими входами вычислителя, индикатор измеренных величин, связанный входами с выходами вычислителя, систему калибровки с включенными последовательно между калибровочными выходом первого и входом второго коммутаторов линией задержки, однополосным модулятором и аттенюатором уровня контрольного сигнала, а также с генератором контрольного сигнала, пусковой вход которого соединен с одним из выходов электронно-вычислительной машины, а выход с сигнальным входом однополосного модулятора, отличающийся тем, что в него введены синтезатор-синхронизатор, выполненный с возможностью синтеза модулирующего сигнала с модуляцией модулирующей частоты по ступенчато-пилообразному закону, формирования пусковых импульсов с взаимным сдвигом на четверть периода модулирующей частоты, тактирующего и синхронизирующих импульсов, ирнтервалов коммутации лучей, кодов модулирующей частоты и лучей, и цифровой узел определения доплеровской частоты и фазы дальности, при этом радиочастотная головка выполнена с возможностью гетеродинирования принимаемого сигнала и помехи квадратурным сигналом, образованным частью мощности передаваемого сигнала, и связана другим входом со вспомогательным выходом СВЧ-передатчика, усилитель промежуточной частоты выполнен двухканальным с полосой пропускания всего набора модулирующих и максимальных доплеровских частот и подключен входами к выходам радиочастотной головки, синтезатор-синхронизатор взаимосвязан цепями управления с электронно-вычислительной машиной и соединен соответствующими выходами с входом СВЧ-передатчика, кодовым входом задания интервалов коммутации узла управления коммутаторами и синхронизирующим входом электронно-вычислительной машины, сигнальные входы цифрового узла определения доплеровской частоты и фазы дальности соединены с выходами усилителя промежуточной частоты, тактирующий, пусковые входы и вход кодов модулирующей частоты и лучей с соответствующими выходами синтезатора-синхронизатора, а выходы с входами значений доплеровской частоты и фазы вычислителя, синхронизирующий вход которого и входы кодов модулирующей частоты и лучей подключены к соответствующим выходам синтезатора-синхронизатора, в состав цифрового узла определения доплеровской частоты и фазы дальности входят четыре преобразователя напряжение код, выполненных с возможностью преобразования выходных сигналов усилителя промежуточной частоты в попарно отображающие сигналы доплеровской частоты с фазовыми сдвигами 0 и
Описание изобретения к патенту
Изобретение относится к устройствам автономной навигации и посадки, предназначенным для навигации и слепой посадки в основном вертолетов и других летательных аппаратов, для которых имеет большое значение диапазон измеряемых скоростей с переменой знака скорости, измерение высоты в диапазоне от максимальной до предельно близкой к нулю, в том числе и при перевозке груза на подвеске, и для которых в режиме висения важна стабильность положения, а в режиме посадки необходимы сведения о наклоне посадочной площадки для правильной ориентации летательного аппарата по отношению к направлению максимальной крутизны для предотвращения опрокидывания. Известны допплеровские измерители, содержащие в своем составе измерители скорости и высоты. Такие устройства применялись для мягкой посадки космических аппаратов на Луну. Известны также допплеровские измерители, в которых измерение высоты осуществляется косвенным путем измерением наклонной дальности вдоль луча антенны (см. Helipat Doppler Velocity-Altimeter System for Helicopters. VTOL and Fixed Wind Aircraft фирмы General Precision). Измерение наклонной дальности по лучам антенны позволяет определять углы наклона местной вертикали. Известен вариант измерителя для вертолетов, который может измерять составляющие скорости, высоту и углы местной вертикали (см. В книге В. Е. Колчинский, И. А. Мандуровский, М. И. Константиновский. "Автономные допплеровские устройства и системы навигации летательных аппаратов". М. "Советское радио". 1975, с. 143 146, рис. 4.27). К недостаткам прототипа следует отнести:1. Использование для выделения сигнала, содержащего фазу дальности, известного способа (см. Статью Фрайда "РЛС непрерывного излучения с частотной модуляцией для одновременного измерения трех составляющих скорости и высоты". "Зарубежная радиоэлектроника" 1964. N 11, с. 3), поскольку в области малых скоростей данный сигнал оказывается промодулирован на 100 двойной допплеровской частотой, что неминуемо должно привести к высокому уровню низкочастотных флюктуаций в информации о высоте, особенно об углах местной вертикали. 2. Для обеспечения точности определения углов необходимо использовать для модуляции высокую частоту, что требует для полетов на больших высотах перехода на низкую частоту модуляции и изменения электрических параметров трактов для сохранения возможности измерения больших высот, что необходимо для определения момента перехода на более высокую частоту и для исключения высотных энергетических провалов при высокой частоте модуляции без вобуляции. 3. Наличие трех аналоговых каналов со своими меняющимися от времени и климатических условий амплитудно-фазочастотными характеристиками также ставит под вопрос возможность измерения малых углов наклона. 4. Аналоговые измерители частоты требуют для последующей передачи накопления информации не менее одного периода допплеровской частоты, что приводит к снижению чувствительности в области околонулевых скоростей. Целью изобретения является создание допплеровского измерителя составляющих вектора скорости, высоты и местной вертикали (ДИСВВ), обеспечивающего как измерение составляющих вектора скорости при полетах от околонулевых скоростей (висение) до максимальных в диапазоне высот от максимальных до минимальных (посадка), так и одновременное измерение высоты и углов местной вертикали с точностями и чувствительностью к околонулевым параметрам, в несколько раз лучшим, чем в случае реализации прототипа. Поставленная цель достигается путем использования ряда новых способов выделения сигналов и устройств, их реализующих. Реализация цели достигается тем, что в ДИСВВ, содержащий многолучевые передающую и приемную антенны, соединенные с сигнальным соответственно выходами первого и входами второго коммутаторов лучей, управляющие входы которых подключены к выходу узла управления коммутаторами, частотно-модулированный СВЧ-передатчик, основной выход которого соединен с сигнальным входом первого коммутатора лучей, двухканальную радиочастотную головку, связанную одним из входов с выходом второго коммутатора, усилитель промежуточной частоты, электронно-вычислительную машину управления и контроля, соединенную параметрическими входами вычислителя, а выходами с входом ввода режима контроля узла управления коммутаторами и управляющим входами вычислителя, индикатор измеренных величин, связанный входами с выходами вычислителя, систему калибровки с включенными последовательно между калибровочными выходом первого и входом второго коммутаторов линией задержки, однополосным модулятором и аттенюатором уровня контрольного сигнала, пусковой вход которого соединен с одним из выходов электронно-вычислительной машины, а выход с сигнальным входом однополосного модулятора, введены синтезатор-синхронизатор, выполненный с возможностью синтеза модулирующего сигнала с вобуляцией моделирующей частоты по ступенчато-пилообразному закону, формирование пусковых импульсов со взаимным сдвигом на четверть периода модулирующей частоты, тактирующего и синхронизирующих импульсов, интервалов коммутации лучей, кодов модулирующей частоты и лучей, и цифровой узел определения допплеровской частоты и фазы дальности, при этом радиочастотная головка выполнена с возможностью гетеродинирования принимаемого сигнала и помехи квадратурным сигналом, образованным частью мощности передаваемого сигнала, и связана другим входом с вспомогательным выходом СВЧ-передатчика, усилитель промежуточной частоты выполнен двухканальным с полосой пропускания всего набора модулирующих и максимальных допплеровских частот и подключен входами радиочастотной головки, синтезатор-сигнализатор взаимосвязан цепями управления с электронно-вычислительной машиной и соединен соответствующими выходами с входом СВЧ-передатчика, кодовым входом задания интервалов коммутации узла управления коммутаторами и синхронизирующим входом электронно-вычислительной машины, сигнальные входы цифрового узла определения допплеровской частоты и фазы дальности соединены с выходами усилителя промежуточной частоты, тактирующий пусковые входы и вход катодов модулирующей частоты и лучей с соответствующими выходами синтезатора-синхронизатора, а выходы с входами значений допплеровской частоты и фазы вычислителя, синхронизирующий вход которого и входы кодов модулирующей частоты и лучей подключены к соответствующим выходам синтезатора-синхронизатора, в состав цифрового узла определения допплеровской частоты и фазы дальности входят четыре преобразователя напряжение-код, выполненных с возможностью преобразования выходных сигналов усилителя промежуточной частоты в попарно отображающие сигналы допплеровской частоты с фазовыми сдвигами




где





Uпер амплитуда сигнала на выходе СВЧ-передатчика. Сигнал передатчика через коммутатор 3.1 поступает поочередно на один из входов многолучевой передающей антенны 1 и излучается по направлению к земле. Расположение лучей антенны относительно строительных осей летательного аппарата (ЛА) и земной поверхности показано на фиг. 2 и 3. X продольная ось антенны параллельна продольной оси ЛА; Y - вертикальная ось антенны параллельна вертикальной оси ЛА; Z поперечная ось антенны параллельна поперечной оси ЛА. X3, Y3, Z3 соответствующие оси посадочной площадки. В0 -угол между осью луча и плоскостью XOZ антенны. Г0 угол между продольной осью X антенны и проекцией оси луча на плоскость XOZ антенны.


где Uотр. амплитуда отраженного сигнала;

tотр. время задержки принимаемого сигнала относительно излучаемого. Кроме отраженного сигнала на входе РЧГ 7 всегда присутствует просочившийся сигнал от передатчики сигнал помехи

где Uп амплитуда помехи;
tп время задержки сигнала помехи. Гетеродирование принимаемого сигнала и помехи в РЧГ 7 осуществляется квадратурным сигналом, образованным частью мощности передатчика. Гетеродинные сигналы описываются следующими выражениями:

где Uг -амплитуда гетеродинного сигнала;
tг время задержки гетеродинного сигнала. После преобразования в РЧГ 7 квадратурные составляющие входного сигнала на модулирующей частоте с учетом разложения с помощью функции Бесселя на выходе усилителей промежуточной чистоты (УПЧ) 8 имеют вид


где









J1(x) функция Бесселя первого порядка. Сигналы с выходов двухканального УПЧ поступают на сигнальные входы цифрового узла определения допплеровской частоты и фазы дальности 9, подробное описание работы которого будет привелено ниже при описании фиг. 4, сигналы (6) и (7) преобразуются в преобразователях напряжение-код (ПНК) 17 и 18 в парные цифровые последовательности квадратурных допплеровских сигналов, которые в цифровой форме фильтруются в диапазоне допплеровских частот. Допплеровские частоты измеряются в устройствах быстрого преобразования Фурье (БПФ) и разделяются на образованные от допплеровского смещения верхней боковой излученного сигнала и образованные от допплеровского смещения нижней боковой излученного сигнала, далее эти сигналы перемножаются для получения сигнала, содержащего информацию о смещении фазы принятого сигнала на частоте модуляции относительно фазы модулирующего сигнала передатчика. В результате обработки сигнала в цифровом узле определения допплеровской частоты и фазы дальности 9 на его выходе для каждого интервала постоянства модулирующей частоты имеют место в цифровой форме следующие сигналы:

полученные в виде кодов в результате цифровой обработки. Эти цифровые значения допплеровской частоты (8) и фазы (9) поступают в каждом цикле обработки в вычислитель составляющих вектора скорости, дальности, высоты и углов местной вертикали 10. Поскольку значение допплеровской частоты в конкретном луче антенны из-за его конечной ширины несколько зависит от значения модулирующей частоты


где Fдi=


Wx продольная составляющая скорости;
Wz поперечная составляющая скорости,
Wy вертикальная составляющая скорости;
Wг проекция вектора скорости на горизонтальную плоскость;

l длина волны несущей передатчика. Для четырехлучевой антенны при расположении лучей антенны согласно фиг. 3 целесообразно использовать следующие формулы:

1, 2, 3, 4 номера, обозначающие лучи антенны. По значениям фазы дальности в каждом из лучей антенны, поступающих из цифрового узла определения допплеровской частоты и фазы дальности 9 на вход вычислителя 10 в нем первоначально определяются дальности в каждом из лучей антенны. По вычислительным дальностям R в лучах антенны определяются значения высоты H и углов местной вертикали


H 2R1R3sinB0/(R1+R3) (18),

для трехлучевой антенны на фиг. 2 и по формулам
H 4sinB0/(1/R4+1/R3+1/R2+1/R1 (21)

для четырехлучевой антенны на фиг. 3. Индексы 1, 2, 3, 4 при R обозначают номера лучей. Для малых высот полета вычисление дальностей в лучах антенны производится по формуле
R = 2


где C скорость света. Вычисленные по формуле (24) дальности в лучах антенны, по которым далее вычисляются высота и глубина местной вертикали, могут быть использованы лишь на высотах, определяемых дальностями в пределах от минимальной до
R TmC/2,
где Tm период частоты модуляции;
C скорость света. Для определения дальностей, превышающих это значение в синтезаторе-синхронизаторе, частоту модулирующего сигнала меняют по ступенчато-пилообразному закону и на каждой ступеньке измеряют фазу дальности, изменение частоты модуляции позволяет избежать энергетических провалов принимаемого сигнала, а также по приращению фазы дальности от ступеньки к ступеньке определять истинные дальности следующим образом:
Пусть















K = целое(




а потом определяют истинную дальность R по формуле
R =





Работа устройства происходит следующим образом. Сигналы с выходов УПЧ 8 определяются выражениями (6), (7). Эти сигналы в ПНК 17, 18 попарно преобразуются в цифровые квадратурные последовательности, следующие на частоте, кратной

в косинусном канале

в синусном канале:

Каждая пара представляет собой комплексный сигнал на допплеровской частоте на выходе канала УПЧ в цифровой форме. После ограничения полосы и режекции помехи в цифровых фильтрах 19 цифровые последовательности могут быть прорежены в прореживающих блоках 20 в несколько раз низкой частотой, кратной модулирующей частоте, для последующей обработки, что позволяет масштабировать информацию при постоянной точности и постоянном объеме оперативной памяти 21. Сигналы с блоков памяти 21 поступают в блоки БПФ 22, в соответствующих частотных выходах которых появляются сигналы в виде цифровых амплитуд спектральных составляющих A, значение которых через величины составляющих на входе определяются следующими формулами:

где



Эти сигналы поступают в измеритель средней допплеровской частоты 25 с учетом знаков. Кроме того, эти сигналы попарно поступают в виде кодов в перемножающий блок 26, на выходах которого получаются следующие значения:

Эти сигналы далее в виде кодов поступают в решающий блок 27, в котором первоначально производится сложение сигналов для исключения случайной фазы по формулам

После этого вычисляются фаза дальности по формуле
2

Точность в предлагаемом ДИСВВ кроме цифровой обработки обеспечивается наличием специального синтезатора-синхронизатора 6 с высокой точностью формирующего модулирующий сигнал и связанные с ним импульсные сигналы. Схема синтезатора-синхронизатора изображена на фиг. 5, на которой представлены кварцевый генератор 28, первый делитель частоты, обеспечивающий изменение частоты модуляции в необходимых пределах и с необходимым дискретом 29, узел управления делителем частоты 30, элемент памяти кодов уровней сигнала разных фаз синусоиды в пределах одного периода 31, второй делитель частоты для формирования периода модулирующего напряжения с выдачей кодов адресов в элемент памяти 31 для считывания кодов уровней 32, преобразователь код-напряжение (ПКН), формирующий синусоиду модулирующего сигнала 33, фильтр модулирующего сигнала для передатчика 34, первый триггер создания сдвинутого во времени импульса 35, второй триггер создания сдвинутого во времени импульса 36, первый ключ создания сдвинутого во времени импульса 37, второй ключ для строба первого импульса запуска ПНК 38, третий ключ для строба сдвинутого на 1/4 периода частоты модуляции импульса запуска ПНК 39, третий триггер формирования строба 40, четвертый ключ для включения счетчика длительности строба 41, первый счетчик задания длительности строба 42, пятый ключ для включения счетчика длительности интервала обработки (интервала постоянства частоты модуляции длительности ступеньки) 43, второй счетчик задание длительности интервала обработки на фиксированной частоте модуляции 44, третий счетчик интервала времени работы одного луча из нескольких интервалов обработки или при нескольких частотах модуляции 45, элемент ИЛИ 46, элемент И 47, четвертый счетчик импульсов работы лучей 48, узел управления синтезатором-синхронизатором от ЭВМ 49, формирователь сетки частот для синхронизации ЭВМ и вычислителя 50. Работа синтезатора-синхронизатора будет понятна из следующего описания фиг. 5. Сигнал кварцевого генератора 28 поступает на первый управляемый делитель частоты 29, обеспечивающий изменение модулирующей частоыты изменением коэффициента деления в заданных пределах в зависимости от кода, поступающего от узла управления 30. Режимы делителя частоты в узле его управления 30 устанавливаются из узла управления синтезатора-синхронизатором 49. Сигнал после управляемого делителя частоты 29 (см. фиг. 6 б1,2,3) поступает в систему формирования синусоиды модулирующего сигнала, состоящего из элемента памяти 31 и второго делителя частоты 32, формирующего адрес для элемента памяти 31. С выхода элемента памяти с темпом, определяемым частотой на выходе первого управляемого делителя частоты 29 выдаются двоичные коды уровней сигнала для разных фаз синусоиды на вход преобразователя код-напряжение (ПКН) 33, на выходе которого имеет место ступенчатое напряжение (см. фиг. 6 в1,2,3), отображающее синусоиду модулирующего сигнала, причем период этой синусоиды зависит от частоты импульсов (см. фиг. 6 б1,2,3) на выходе управляемого делителя частоты 29. Сигнал ступенчатой синусоиды (см. фиг.6 в1,2,3) после преобразователя код-напряжение (ПКН) 33 через фильтр 34 поступает для модуляции СВЧ-передатчика 5. Для получения пусковых импульсов для преобразователей напряжение-код (ПНК)17 и 18 в цифровом узле 9 необходимо обеспечить жесткую прибавку этих импульсов к значениям фазы модулирующего напряжения. Это сделано путем использования импульсов после первого делителя частоты 29, второго делителя частоты (счетчика периода синусоиды) 32, первого 35 и второго 36 триггеров (количество триггеров определяется фазовой точностью отображения синусоиды) и первого ключа 37. Формирование синусоиды модулирующего сигнала совместно с пусковыми импульсами для ПНК показано на фиг. 6 в1,2,3, 6 г1,2,3, 6 д1,2,3. Второй 38 и третий 39 ключи совместно с третьим триггером 40 обеспечивают стробирование информации во время переходного периода, связанного с изменением частоты модуляции и наличием коммутации лучей. Для того, чтобы объем информации на входе цифровой обработки был постоянным при любой модулирующей частоте, формирование интервалов обработки (интервалов постоянства частоты модуляции) и длительностей времени работы лучей осуществляется импульсами (см. фиг. 7а) с выхода второго делителя частоты 32, определяющего период модуляции. Импульсы с выхода этого делителя частоты поступают на входы четвертого 41 и пятого 43 ключей, открывающихся поочередно. Четвертый ключ 41 открывает доступ импульсам с выхода второго делителя частоты 32 к первому счетчику длительности строба 2. Четвертый ключ 41 открывается третьим триггером 40, который запускается импульсом от элемента ИЛИ 46, а выключается импульсом с выхода счетчика длительности строба 42 импульсы строба (см. фиг.7б). Выход счетчика длительности строба 42 подключен и открывает пятый ключ 43, выход которого подсоединен к второму счетчику длительности интервала обработки (интервала постоянства частоты модуляции) 44 (импульсы на выходе счетчика 44 см. на фиг. 7в). Импульсы с выхода счетчика 44 поступают на третий счетчик количества интервалов обработки 45 (импульсы на выходе счетчика 45 см. на фиг. 7д и 7ж), формирующий длительность интервала работы одного луча, и на элемент И 47, позволяющий переключать режим работы с переменной или с постоянной частотой модуляции по команде из узла управления 49. Импульсы с выхода элемента И 47 поступает через элемент ИЛИ 46 на запуск триггера длительности строба 40 в режиме с переменной частотой модуляции. Импульсы с выхода счетчика 44 поступают также в узел управления 49 для формирования на реверсивном счетчике кода модулирующей частоты и кода управления частотой модуляции для узла управления 30. Импульсы с выхода третьего счетчика 45 поступают на вход четвертого счетчика (номера лучей) 48 и на элемент ИЛИ 46, запускающий триггер 40 длительности строба при переключении лучей антенны, когда работа идет с постоянной частотой модуляции. Для привязки от сбоев третий счетчик 43 обнуляется каждым циклом работы счетчика номера лучей 48. Коды счетчика номера лучей 48 выдаются в узел управления синтезатором-синхронизатором 49 для передачи в цифровой узел 9 и вычислитель 10, эти коды также выдаются для работы блока управления коммутатором 4. От узла управления 49 во все устройства цифровой обработки 9, 10 выдаются коды частоты модуляции. Для устранения возможных помех для ЭВМ и других устройств 9, 10, 11, работающих не в натуральном масштабе времени, в формирователе 50, получающем исходный сигнал от кварцевого генератора 28, создаются импульсные сигналы, необходимые для их работы
На фиг. 7г и 7е показана смена модулирующих частот. Эксперименты на макете ДИСВВ показали, что точность и чувствительность по составляющим скорости, дальности и углам наклона обеспечивает в 3 5 раз лучшие показатели, чем у допплеровских измерителей других вариантов выполнения.
Класс G01S13/92 для измерения скорости
Класс G01S13/42 одновременное измерение дальности и других координат