способ анализа сигналов о состоянии объекта
Классы МПК: | G06K9/00 Способы и устройства для считывания и распознавания напечатанных или написанных знаков или распознавания образов, например отпечатков пальцев G06K9/62 способы и устройства для распознавания с использованием электронных средств G06K9/66 с эталонами, модифицируемыми адаптивным методом, например обучение |
Патентообладатель(и): | Храбров Вячеслав Валентинович[BY] |
Приоритеты: |
подача заявки:
1992-04-07 публикация патента:
20.09.1997 |
Использование: для повышения точности распознавания состояния объекта в системах технической кибернетики. Сущность: формирование и коррекция распознающих эталонов (обучение), сравнение распознающих эталонов с анализируемым сигналом, формирование оценок состояний объекта, сравнение оценок с заданным порогом распознавания. Технический результат достигается благодаря тему, что все сигналы о состоянии объекта нормируют, затем на этапе обучения формируют распознающие эталоны с учетом достоверности на основе нормированных сигналов, формируют оптимизирующий эталон первого уровня, на основе которого из распознающих эталонов первого уровня формируют оптимизированные распознающие эталоны второго уровня, а на этапе распознавания оптимизируют сигнал о состоянии объекта и сравнивают его с каждым из оптимизированных распознающих эталонов соответствующего уровня. В результате получают оценки состояния объекта, на основании которых путем их сравнения с заданным порогом распознавания выделяют подмножество распознающих эталонов, на основе которого повторяют процесс оптимизации распознающих эталонов и анализируемого сигнала с последующим распознаванием состояния объекта до тех пор, пока результат распознавания не удовлетворит заданному критерию достоверности или неудачи. Нормирование, формирование и коррекцию распознающих эталонов, оптимизацию и сравнение сигналов и эталонов осуществляют в Евклидовом векторном пространстве сигналов и эталонов. 5 з.п. ф-лы, 6 ил, 5 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7
Формула изобретения
1. Способ анализа сигналов о состоянии объекта, включающий в себя формирование распознающих эталонов с последующей коррекцией на основе обучающих сигналов о состоянии объекта, сравнение распознающих эталонов с анализируемым сигналом о состоянии объекта, формирование набора величин оценок принадлежности состояния объекта каждому из множества возможных состояний объекта, сравнение полученных величин оценок с заданным порогом распознавания состояния объекта, отличающийся тем, что все сигналы о состоянии объекта предварительно нормируют, затем на этапе обучения распознающие эталоны первого уровня формируют с учетом достоверности на основе нормированных известных сигналов, формируют оптимизирующий эталон первого уровня, на основе которого из распознающих эталонов первого уровня формируют оптимизированные распознающие эталоны второго уровня, а на этапе распознавания формируют оптимизированный сигнал о состоянии объекта аналогично оптимизации распознающих эталонов, сравнивают оптимизированный сигнал с каждым из оптимизированных распознающих эталонов соответствующего уровня, в результате чего и формируют величины оценок состояния объекта, сравнивают их с заданным порогом распознавания и выделяют подмножество величин оценок, превышающих порог распознавания, выделяют соответствующее выделенному подмножеству величин оценок подмножество распознающих эталонов, на основе которого повторяют процесс оптимизации распознающих эталонов и анализируемого сигнала с последующим распознаванием состояния объекта до тех пор, пока результат распознавания не удовлетворит заданному критерию достоверности или неудачи. 2. Способ по п.1, отличающийся тем, что операции нормирования, формирования и коррекции распознающих эталонов, оптимизации и сравнения сигналов и эталонов осуществляются в Евклидовом векторном пространстве сигналов и эталонов. 3. Способ по п. 1 или 2, отличающийся тем, что формирование и коррекцию распознающих эталонов производят путем последовательного усреднения нормированных сигналов о состоянии объекта в соответствии со следующим правилом:R0 0,




k порядковый номер сигнала или эталона,
Rk корректируемый распознающий эталон;


Rk+1 корректированный распознающий эталон;



X(L+1) Xn(L) (Xn(L), Cn(L))

где Xn оптимизируемый нормированный распознающий эталон или анализируемый сигнал;
C оптимизирующий эталон;
Cn нормированный оптимизирующий эталон;
(L) верхний индекс, обозначающий уровень оптимизации;
(X(L), C(L)) операция скалярного умножения,
затем измеряют и сохраняют величину нормы каждого скорректированного эталона или анализируемого сигнала о состоянии объекта в соответствии с правилом
N(0) 1,

где N(L) норма эталона или сигнала на L-ом уровне оптимизации,
после чего скорректированный анализируемый сигнал или каждый из скорректированных распознающих эталонов нормируют, используя сохраненную величину его нормы. 6. Способ по любому из пп. 1 5, отличающийся тем, что сравнение анализируемого сигнала с каждым из распознающих эталонов, а также получение величин оценок состояния объекта производят в соответствии со следующим правилом:

где N(RL) - величина нормы для распознающего эталона на L-ом уровне оптимизации,
N(


(Sn(L), Rn(L)) операция скалярного умножения.
Описание изобретения к патенту
Изобретение относится к области технической кибернетики и может быть использовано для определения состояний объектов. Известны способы анализа сигналов на основе ортогональных преобразований и корреляционного сравнения сигналов, использующие обучение для выработки критериев распознавания, реализованные в моделях нейронных сетей (Ersoy O.K. Signal/Image Processing and Understanding with Neural Networks. Neural networks: concepts, appl. and impl./ P. Antoghetti and V. Milutinovic, editors, (Prentice Hall adv. ref. ser. Engineering), vol. 1, 1991, p. 77 - 109). Недостатком этих способов является низкая точность анализа сигналов, обусловленная трудностью оптимизации критериев распознавания. Наиболее близким к заявленному является способ анализа сигнала о состоянии объекта (Киселев Н.В. Сечкин В.А. Техническая диагностика методами нелинейного преобразования. -Л. Энергия, 1980, 109 с. ), включающий формирование c последующей коррекцией распознающих эталонов на основе обучающих сигналов, сравнения распознающих эталонов с анализируемым сигналом с получением набора оценок о принадлежности реального состояния объекта каждому из множества возможных состояний объекта, сравнения полученных оценок между собой и с заданным порогом распознавания, в результате которого формируется решение о предполагаемом состоянии объекта. Однако известный способ не позволяет оценить достоверность процесса обучения и распознавания, что является критичным в условиях шумов, приводящих к слабой различимости сигналов, относящихся к разным соcтояниям объекта. Каждая система анализа сигналов может в этой ситуации дать ошибочный результат распознавания. В таком случае отсутствие механизма оценки достоверности приводит к тому, что грубая ошибка распознавания состояния объекта не будет замечена. Изобретение направлено на повышение точности распознавания состояния объекта путем введения механизма измерения достоверности сигналов и эталонов через сравнение сигналов с эталонами по нормированной шкале измерений. Благодаря этому появляется возможность адаптивной оптимизации процесса анализа сигнала относительно заданного набора распознающих эталонов. Указанный технический результат достигается тем, что в способе анализа сигналов о состоянии объекта, включающем формирование с последующей коррекцией распознающих эталонов на основе обучающих сигналов, сравнение распознающих эталонов о анализируемым сигналом о состоянии объекта, формирование набора оценок принадлежности реального состояния объекта каждому возможному состоянию, представленному распознающим эталоном, сравнение полученных оценок между собой и с заданным порогом распознавания, все сигналы о состоянии объекта нормируют, затем с учетом достоверности на этапе обучения распознающие эталоны первого уровня формируют на основе нормированных сигналов о состоянии объекта, формируют оптимизирующий эталон первого (текущего) уровня, на основе которого из распознающих эталонов первого (текущего) уровня формируют оптимизированные распознающие эталоны второго (следующего) уровня, и на этапе распознавания формируют оптимизированный сигнал о состоянии объекта аналогично оптимизации распознающих эталонов. После сравнения оптимизированного сигнала с каждым из оптимизированных распознающих эталонов соответствующего уровня, получения оценок состояния объекта, сравнения этих величин между собой и с заданным порогом распознавания выделяют соответствующее им подмножество распознающих эталонов, на основе которого повторяют процесс оптимизации распознающих эталонов и анализируемого сигнала с последующим распознаванием состояния объекта до тех пор, пока результат распознавания не удовлетворит заданному критерию достоверности или неудачи. Нормирование, формирование и коррекцию распознающих эталонов, а также оптимизацию и сравнение сигналов и эталонов осуществляют в Евклидовом векторном пространстве сигналов и эталонов. Операция нормирования в Евклидовом пространстве осуществляется по следующему известному правилу:
где: X сигнал или эталон, подлежащий нормированию;
Xn нормированный сигнал или эталон;
(X, X) операция скалярного произведения, определяющая квадрат нормы сигнала или эталона. Формирование и последующую коррекцию распознающих эталонов (обучение) производят путем последовательного усреднения нормированных сигналов о состоянии объекта в соответствии со следующим правилом:
R0 0

где: k порядковый номер сигнала или эталона;
Rk, корректируемый распознающий эталон;
Rnk нормированный корректируемый распознающий эталон;
Snk+1 нормированный обучающий (известный) сигнал;
k+1 корректированный распознающий эталон;

b коэффициент сохранения распознающего эталона;
(Snk+1, Rnk операция скалярного произведения, определяющая достоверность обучающего сигнала Sk+1Е по отношению к ранее построенному эталону Rn. Формирование оптимизирующего эталона производят путем усреднения распознающих эталонов, подлежащих оптимизации. Распознающие эталоны и анализируемые сигналы оптимизируют с целью выделения существенных компонент. Оптимизация производится в три этапа. На первом этапе выделенные распознающие эталоны или анализируемый сигнал преобразуют согласно правилу подавления несущественной компоненты: X(L+1) Xn(L) (Xn(L),Cn(L))

где Xn оптимизируемый нормированный эталон или нормированный сигнал;
C оптимизирующий эталон, представляющий собой усреднение нормированных распознающих эталонов;
Cn нормированный оптимизирующий эталон;
(L)- верхний индекс, обозначающий уровень оптимизации;
(Xn(L), Cn(L)) операция скалярного произведения, определяющая часть оптимизирующего эталона, которую вычитают из сигнала или эталона. На втором этапе измеряют и сохраняют величину нормы каждого скорректированного распознающего эталона или анализируемого сигнала о состоянии объекта в соответствии с правилом:
N(о) 1

где N(L) величина нормы эталона или сигнала на L-том уровне оптимизации. На третьем этапе скорректированный сигнал или каждый из скорректированных эталонов нормируют. Полученные на втором этапе величины норм распознающих эталонов или сигналов используют в дальнейших операциях при получении величин оценок состояния объекта. Сравнение анализируемого сигнала с каждым из распознающих эталонов, а также получение величин оценок состояния объекта производят в соответствии со следующим правилом:

где N(RL) величина нормы для распознающего эталона на L-том уровне оптимизации;
N(


Класс G06K9/00 Способы и устройства для считывания и распознавания напечатанных или написанных знаков или распознавания образов, например отпечатков пальцев
Класс G06K9/62 способы и устройства для распознавания с использованием электронных средств
Класс G06K9/66 с эталонами, модифицируемыми адаптивным методом, например обучение