регулируемое акустоэлектронное устройство
Классы МПК: | H03H9/00 Схемы с электромеханическими или электроакустическими элементами; электромеханические резонаторы H03H9/30 схемы задержки |
Автор(ы): | Алексеев А.Н. |
Патентообладатель(и): | Московский инженерно-физический институт |
Приоритеты: |
подача заявки:
1994-07-05 публикация патента:
10.01.1998 |
Использование: в качестве регулируемого акустоэлектронного устройства временной или фазовой селекции сигналов, например, в качестве регулируемой ультразвуковой линии задержки (РУЛЗ) в различных радиоэлектронных системах обработки сигнальной информации. Сущность изобретения: устройство выполнено на основе звукопровода из полидоменного монокристалла сегнетоэластика-сегнетоэлектрика, изоморфного молибдату гадолиния, с электрически регулируемым пространственным положением плоской доменной границы (ПДГ) и содержащем информационный акустический канал, а также контрольно-измерительный акустический канал, включенный в цепь отрицательной обратной связи по пространственному положению ПДГ. В качестве преобразователей объемных акустических волн (ОАВ) контрольно-измерительного акустического канала использованы пьезоэлектрические преобразователи сдвиговой моды колебаний, расположенные со стороны двух противолежащих Z-граней звукопровода и размещенные в рабочей области перемещения ПДГ с полным ее перекрытием, при этом оси акустической поляризации обоих пьезопреобразователей контрольно-измерительного акустического канала ориентированы коллинеарно друг к другу и под углом
/4 к плоскости ПДГ. Акустический контакт каждого из этих преобразователей ОАВ со звукопроводом выполнен с использованием иммерсионного диэлектрического слоя. В качестве блока формирования сигнала управления использован фазовый детектор с элементом сравнения с уставкой. Приведено соотношение для выбора частоты генератора опорного синусоидального сигнала, равной частотам резонанса обоих пьезопреобразователей контрольно-измерительного акустического канала. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения
Регулируемое акустоэлектронное устройство, содержащее пьезоэлектрический звукопровод, выполненный из полидоменного монокристалла сегнетоэластика-сегнетоэлектрика, изоморфного молибдату гадолиния, в виде пластины Z-среза, содержащей по крайней мере два разнополярных домена, разделенных плоской доменной границей (ПДГ), основные входной и выходной преобразователи объемных акустических волн (ОАВ), находящиеся в акустическом контакте со звукопроводом и расположенные на его одной или двух противолежащих торцевых гранях, перпендикулярных Z-граням звукопровода, и образующие вместе с ПДГ информационный акустический канал, управляющие электроды, расположенные на двух противолежащих Z-гранях звукопровода в рабочей области перемещения ПДГ и подсоединенные к выходу регулируемого источника постоянного электрического напряжения, отличающееся тем, что в него введены дополнительные входной и выходной преобразователи ОАВ, также находящиеся в акустическом контакте со звукопроводом, размещенные со стороны двух его противолежащих Z-граней в рабочей области перемещения ПДГ с полным ее перекрытием и образующие контрольно-измерительный акустический канал, генератор опорного синусоидального сигнала, выход которого соединен с входным дополнительным преобразователем ОАВ, и блок формирования сигнала управления, включенный между входом регулируемого источника постоянного электрического напряжения и выходным дополнительным преобразователем ОАВ, при этом в качестве преобразователей ОАВ контрольно-измерительного акустического канала использованы пьезоэлектрические преобразователи ОАВ сдвиговой моды колебаний, оси акустической поляризации которых ориентированы коллинеарно друг другу и под углом
fc= vs1



где b размер звукопровода в направлении, перпендикулярном двум его противолежащим Z-граням, м;

Описание изобретения к патенту
Изобретение относится к радиоэлектронике, в частности акустоэлектронике, и может быть использовано в качестве регулируемого акустоэлектронного устройства временной или фазовой селекции сигналов, например в качестве регулируемой ультразвуковой линии задержки, в различных радиоэлектронных системах обработки сигнальной информации. Известны регулируемые акустоэлектронные устройства временной и фазовой селекции сигналов, в частности регулируемые ультразвуковые линии задержки (РУЛЗ), содержащие пьезокристаллический звукопровод, выполненный из полидоменного монокристалла сегнетоэластика-сигнетоэлектрика, изоморфного молибдату гадолиния, в виде пластины Z-среза, содержащей по крайней мере два разнополярных домена, разделенных плоской доменной границей (ПДГ), основные входной и выходной преобразователи объемных акустических волн (ОАВ), находящиеся в акустическом контакте со звукопроводом и расположенные на его одной или обеих противолежащих рабочих торцовых гранях, перпендикулярных Z-граням звукопровода, и образующие вместе с ПДГ информационный акустический канал, управляющие электроды, расположенные на двух противолежащих Z-гранях звукопровода в рабочей области перемещения ПДГ и подсоединенные к выходу регулируемого источника постоянного электрического напряжения [1]Основным недостатком таких регулируемых акустоэлектронных устройств является невысокая точность регулирования информативного параметра (в частности, величины времени задержки сигнала в РУЛЗ ОАВ), обусловленная низкой воспроизводимостью промежуточной регулировочной характеристики устройства: "изменение величины управляющего сигнала на выходе регулируемого источника напряжения изменение местоположения доменной границы в звукопроводе", связанной с наличием отклонений в стихеометрическом составе монокристаллического материала звукопровода, степенью его дефектности, униполярности и т. д. приводящим к практически непредсказуемому изменению реальных величин коэрцетивных полей монокристалла и, как следствие, к нарушению однозначности и воспроизводимости регулировочной характеристики устройства: "величина управляющего электрического напряжения величина регулируемой временной задержки сигнала". Наиболее близким к изобретению по технической сущности является другое известное регулируемое акустоэлектронное устройство, выполняющее функции регулируемого фазового или временного сдвига, в частности и функции РУЛЗ ОАВ, выбранное в качестве устройства прототипа, содержащее пьезокристаллический звукопровод, выполненный из полидоменного монокристалла сегнетоэластика-сегнетоэлектрика, изоморфного молибдату гадолиния, в виде пластины Z-среза, содержащей по крайней мере два разнополярных домена, разделенных плоской доменной границей (ПДГ), основные входной и выходной преобразователи объемных акустических волн (ОАВ), находящиеся в акустическом контакте со звукопроводом и расположенные на его одной или двух противолежащих рабочих торцовых гранях, перпендикулярных Z-граням звукопровода, и образующие вместе с ПДГ информационный акустический канал, дополнительные входной и выходной преобразователи ОАВ, также находящиеся в акустическом контакте со звукопроводом и размещенные со стороны двух его противолежащих торцовых граней, ортогональных одной или обеим указанным выше рабочим торцовым граням звукопровода, и образующие контрольно измерительный акустический канал, управляющие электроды, расположенные на двух противолежащих Z-гранях звукопровода в рабочей области перемещения ПДГ и подсоединенные к выходу регулируемого источника постоянного электрического напряжения, вход которого через блок формирования сигнала управления соединен с выходным преобразователем ОАВ контрольно-измерительного акустического канала, а входной преобразователь последнего соединен с генератором опорного синусоидального сигнала [2]
В этом известном регулируемом акустоэлектронном устройстве отработка заданной величины регулируемого информативного параметра (фазового сдвига, временной задержки) осуществляется с использованием отрицательной обратной связи по положению ПДГ в звукопроводе, благодаря чему оно характеризуется достаточно высокой точностью регулирования. Однако это имеет место только для очень узкого диапазона регулирования информативного параметра, в частности, ограниченного десятыми долями процента для РУЛЗ ОАВ. Обусловлено это несколькими причинами. Прежде всего, сама топология данного регулируемого акустоэлектронного устройства ограничивает максимальный потенциально возможный диапазон регулирования величины времени задержки информационного сигнала значением, не превышающим 3% от его номинальной величины (см. например, [1]). Кроме того, используемая топология контрольно-измерительного акустического канала, принципиально ограничивающая область пространственного перемещения ПДГ из-за необходимости размещения преобразователей этого канала по разные стороны от нее (см. [2]), еще более сужает (в несколько раз) диапазон регулирования. Наконец, дополнительное сужение достижимого диапазона регулирования в известном устройстве связано и с необходимостью реализации однозначной зависимости выходного сигнала контрольно-измерительного канала относительно величины смещения ПДГ. В результате, приемлемая точность регулирования величины времени задержки в устройстве-прототипе оказывается достижимой лишь в диапазоне регулирования, не превышающем нескольких десятых долей процента. Технический результат, на достижение которого направлено заявляемое изобретение, заключается в обеспечении высокой точности регулирования величины информативного параметра, гарантируемой использованием цепи отрицательной обратной связи по положению ПДГ, в широком диапазоне его регулирования, в частности, в обеспечении высокой точности регулирования величины времени задержки в РУЛЗ ОАВ в диапазоне его регулирования до десятков и сотен процентов от номинального значения. Реализация этого на основе использования цепи отрицательной обратной связи по положению ПДГ в звукопроводе устройства предполагает обеспечение условий расширения диапазона контролируемого цепью отрицательной обратной связи пространственного положения ПДГ. Сущность предлагаемого изобретения заключается в том, что в регулируемом акустоэлектронном устройстве, содержащем пьезоэлектрический звукопровод, выполненный из полидоменного монокристалла сегнетоэластика-сегнетоэлектрика, изоморфного молибдату гадолиния, в виде пластины Z-среза, содержащей по крайней мере два разнополярных домена, разделенных плоской доменной границей (ПДГ), основные входной и выходной преобразователи объемных акустических волн (ОАВ), находящиеся в акустическом контакте со звукопроводом и расположенные на его одной или двух противолежащих рабочих торцовых гранях, перпендикулярных Z-граням звукопровода, и образующие вместе с ПДГ информационный акустический канал, дополнительные входной и выходной преобразователи ОАВ, также находящиеся в акустическом контакте со звукопроводом, размещенные со стороны двух его противолежащих граней, ортогональных одной или обоим указанным выше рабочим торцовым граням звукопорвода, и образующие контрольно-измерительный акустический канал, управляющие электроды, расположенные на двух противолежащих Z-гранях звукопровода в рабочей области перемещения ПДГ и подсоединенные к выходу регулируемого источника постоянного электрического напряжения, вход которого через блок формирования сигнала управления соединен с выходным преобразователем ОАВ контрольно-измерительного акустического канала, а входной преобразователь последнего соединен с генератором опорного синусоидального сигнала, согласно изобретению, в качестве преобразователей ОАВ контрольно-измерительного акустического канала использованы пьезоэлектрические преобразователи сдвиговой моды колебаний, расположенные со стороны двух противолежащих Z-граней звукопровода и размещенные в рабочей области перемещения ПДГ с полным ее перекрытием, при этом оси акустической поляризации обоих пьезопреобразователей контрольно-измерительного акустического канала ориентированы коллинеарно друг к другу и под углом

fo= vs1vs2/4b

где b размер (толщина) звукопровода в направлении, перпендикулярном двум его противолежащим Z-граням, м;


t=(x1+x2)/vS и t=(x1/vL+x2/vS) или t=(x1/vS+x2/vL), (1)
где vS и vL скорости ОАВ S- и L-мод колебаний, соответственно;
х1 и х2 расстояния от ПДГ до входного и от ПДГ до выходного преобразователей соответственно. Учитывая, что для данного конструктивного варианта устройства ( фиг. 1, а) х1

t=2x1/vS и t=x1(1/vL+1/vS) (1*)
Во втором конструктивном варианте устройства (фиг. 1, б) один преобразователь (5 или 6) сдвиговой моды кобебаний, а другой продольной, поэтому временная задержка t выходного информационного сигнала относительно входного определяется соотношениями:
t=(x1/vL+x2/vS) и t=(x1/vL+x2/vS) или t=(x2/vL+x1/vS), (2)
где все обозначения идентичны оговоренным выше с тем лишь добавлением, что теперь (фиг. 1, б) величины х1 и х2 связаны между собой соотношением: х1+х2= l, где l длина звукопровода 1. С учетом этого, соотношения (2) преобразуются к виду:
t=l/vS+x1(1/vL+1/vS) или t=l/vL+x1(1/vS+1/vL) (2*)
В соотношениях (1*) и (2*) величины l, vS и vL являются фиксированными для выбранных размеров звукопровода, его материала и направления распространения ОАВ в нем. Таким образом, временная задержка t выходного информационного сигнала относительно входного в заявляемом устройстве оказывается однозначно связанной с местоположением ПДГ 4 в звукопроводе, определяемом, в частности, расстояние х1 от входного преобразователя 5 до ПДГ 4 вдоль акустического информационного канала. При наличии на выходных клеммах 17 и 18 регулируемого источника 19, а следовательно, и на управляющих электродах 15 и 16, постоянного электрического напряжения, создающего в области звукопровода 1 под электродами 15, 16 электрическое поле Е, превышающее по величине соответствующее коэрцетивное значение Е, в силу сегнетоэлектрических свойств материала звукопровода 1 имеет место его периполяризация, которая, благодаря сегнетоэластической природе материала звукопровода 1, осуществляется путем бокового смещения ПДГ 4 по звукопроводу 1. Это, в зависимости от знака приложенного к электродам 15, 16 электрического напряжения, приводит к увеличению или уменьшению расстояния х1 между входным преобразователем 5 и ПДГ 4 на величину




Как следует из соотношений (1**) и (2**), для первого конструктивного варианта устройства (фиг. 1, а) диапазон регулирования














Цепь обратной связи образована контрольно-измерительной схемой (24, 23, 9, 10, 22, 21, 20, 19, 18), в которой генератор 24 опорного синусоидального сигнала фиксированной частоты вместе с акустическим контрольно-измерительным каналом (23, 9, 10, 22) играет роль датчика пространственного положения ПДГ 4 в рабочей области ее перемещения: устройство 21 формирования сигнала управления играет роль преобразователя сигнала с датчика (фазовый детектор 21") и элемента сравнения 21": регулируемый источник 19 постоянного электрического напряжения роль исполнительного органа. Описанная цепь обратной связи осуществляет автоматическую коррекцию величины и знака постоянного электрического напряжения на выходных клеммах 17, 18 источника 19, прикладываемого к управляющим электродам 15, 16, обеспечивающую реализацию необходимой величины х смещения ПДГ 4 для получения заданного значения временной задержки t* информационного сигнала. Характерной особенностью функционирования заявляемого устройства, обусловленной спецификой его конструкции (ее существенными отличиями) в сравнении с устройством прототипом, является реализация процесса выработки управляющего сигнала, поступающего на вход 20 регулируемого источника 19. Осуществляется это следующим образом. Подсоединенный к генератору 24 опорного синусоидального сигнала фиксированной частоты f0 входной пьезопреобразователь 9 возбуждает объемную акустическую волну (ОАВ), которая, пройдя через иммерсионный слой 11, распространяется по звукопроводу 1 во всей рабочей области перемещения ПДГ 4 в направлении, параллельном плоскости последней. Пройдя звукопровод 1 и миновав второй иммерсионный слой 12, эта ОАВ преобразуется выходным пьезопреобразователем 10 в электрический сигнал, выделяемый на клемме 22. Этот сигнал несет информацию о положении ПДГ 4 в рабочей области ее перемещения (фиг. 2, а). Действительно, благодаря выбранной ориентации оси акустической поляризации преобразователя 9 под углом

fo= vs1vs2/4b

где b размер (толщина) звукопровода 1 в направлении кристаллофизический оси Z, м;

различие фазовых набегов двух парциальных ОАВ оказывается равным



или в координатах х местоположения ПДГ 4, а также начала хн и конца хк ее рабочей области перемещения по звукопроводу 1 (фиг. 2, б, в), соотношением:


Характер этой зависимости, представленной на фиг. 2, а, свидетельствует об однозначной связи координаты х местоположения ПДГ в рабочей области (хк хн) ее перемещения по звукопроводу 1 с изменением


Источники информации:
1. Алексеев А.Н./ Известия АН СССР. Серия физическая. 1989, т. 53, N7, с.1424-1433. 2. Авторское свидетельство N 1517716, 1989, кл.H 03 H 9/30 прототип. 3. Алексеев А. Н. Злоказов М.В. Осипов И.В./ Известия АН СССР. Серия физическая. 1982, т. 47, N3, с.465-475. 4. Алексеев А.Н. Злоказов М.В./Кн. "Управляемые акустоэлектронные устройства обработки сигналов". М. Энергоатомиздат, 1990, с. 3-21.
Класс H03H9/00 Схемы с электромеханическими или электроакустическими элементами; электромеханические резонаторы
линия задержки свч сигнала - патент 2286006 (20.10.2006) | |
устройство задержки импульсов - патент 2269866 (10.02.2006) | ![]() |
композитный материал акустического демпфера - патент 2159503 (20.11.2000) | |
активная пьезоэлектрическая линия задержки - патент 2157045 (27.09.2000) | |
способ задержки импульсных радиосигналов - патент 2146413 (10.03.2000) | |
цифровая регулируемая линия задержки - патент 2108659 (10.04.1998) | |
регулируемое акустоэлектронное устройство - патент 2101855 (10.01.1998) | |
термостабилизированная линия задержки - патент 2033689 (20.04.1995) | |
цифровая регулируемая линия задежки - патент 2011290 (15.04.1994) |