способ и состав для получения неорганического волокна

Классы МПК:C03B37/02 вытягиванием или выдавливанием
C03C13/02 содержащие соединения титана или циркония
Автор(ы):,
Патентообладатель(и):Кибол Виктор Федорович (UA)
Приоритеты:
подача заявки:
1996-07-26
публикация патента:

Неорганическое волокно получают путем подачи минералов в плавильную печь, получения расплава, его гомогенизации, подачу в зону формирования волокна для вытягивания его из расплава и последующего наматывания на нитесборник. Температуру в плавильной печи устанавливают 1705 - 2000oC. Вытягивание волокна производят со скоростью 5505 - 6500 м/мин. Состав для получения неорганического волокна включает следующие компоненты, мас.%: SiO 55,30 - 60,1; Al2O3 18,01 - 19,90; TiO2 0,02 - 1,02; Fe2O3 или FeO 7,51 - 8,03; CaO 4,52 - 9,50; MgO 3,01 - 3,95; P2O5 0,12 - 0,14; MnO 0,10 - 0,15; K2O 1,40 - 3,60; Na2O 1,80 - 1,90. Техническим результатом изобретения является обеспечение возможности волокон толщиной менее 4 мкм. 2 с.п.ф-лы, 3 табл.
Рисунок 1

Формула изобретения

1. Способ получения неорганического волокна путем подачи минералов в плавильную печь, получения расплава, его гомогенизации, подачи в зону формирования волокна для вытягивания его из расплава и последующего наматывания на нитесборник, отличающийся тем, что температуру в плавильной печи устанавливают 1705 - 2000oC, а вытягивание волокна производят со скоростью 5505 - 6500 м/мин.

2. Состав для получения неорганического волокна, включающий SiO2, Al2O3, TiO2, Fe2O3, FeO, CaO, MgO, MnO и R2O, отличающийся тем, что он дополнительно содержит P2O5, в качестве R2O содержит K2O и Na2O при следующем соотношении компонентов, мас.%:

SiO2 - 55,30 - 60,01

Al2O3 - 18,01 - 19,90

TiO2 - 0,02 - 1,02

Fe2O3+FeO - 7,51 - 8,03

CaO - 4,52 - 9,50

MgO - 3,01 - 3,95

P2O5 - 0,12 - 0,14

MnO - 0,10 - 0,15

K2O - 1,40 - 3,60

Na2O - 1,80 - 1,90д

Описание изобретения к патенту

Изобретение относится к технологии получения неорганических волокон из расплавленных минералов вытягиванием, которые могут использоваться для получения термостойких нитей и тканей.

Наиболее близким к заявляемому изобретению - способу является способ получения неорганического волокна путем подачи базальтовой породы в плавильную печь, нагрева породы до температуры плавления, а именно до 1500 - 1600oC, получения расплава и его гомогенизации (1).

Согласно известному способу, гомогенизированный расплав подают в зону формирования волокна, где волокно вытягивают со скоростью 3500 - 4500 м/мин без остановок и замедлений из расплава с вязкостью 110 - 500 пуаз. Вначале волокна собирают непрерывным вытягиванием вручную и полученный пучок заводят в канавку ролика нитесборника, быстро вытягивая его под углом 60 - 80o. Волокна, полученные известным способом, имеют средний диаметр элементарного волокна 4 - 5,5 мкм.

Недостатком данного способа является невозможность получения элементарных волокон диаметром менее 4 мкм, т.к. последний зависит от скорости вытягивания, которая, в свою очередь, определяется вязкостью расплава, Так, увеличение скорости выше указанной, т.е. 4500 м/мин, при данной вязкости расплава приведет лишь к обрыву волокна, а не к уменьшению его диаметра. Вязкость расплава зависит от исходного состава материала и температуры нагрева расплава.

Известен состав для получения минерального волокна, включающий SiO2, Al2O3, TiO2, F2O3, FeO, CaO, MgO, MnO, R2O при следующем соотношении компонентов, мас.%:

SiO2 27 - 61, Al2O3 8 - 23, TiO2 0,5 - 3,0, Fe2O3 0,8 - 12, FeO 0,1 - 4,0, MnO 0,5 - 1,0, CaO 8 - 20, MgO 4,5 - 21, R2O 0,1 - 5,5 (2).

Минеральное волокно с таким составом получают загружая подготовленные компоненты в плавильный агрегат, где их плавят при температуре 1250 - 1400oC, и затем расплав перерабатывают в волокно центробежно-валковым способом при 1340 - 1400oC. Полученное минеральное волокно имеет диаметр волокон 4 - 6 мкм.

Недостатком известного состава является невозможность получения нити диаметром менее 4 мкм, т.к. данный состав при нагревании до более высокой температуры расслаивается и волокно невозможно сформировать.

В основу изобретения поставлена задача усовершенствовать способ получения неорганического волокна путем обеспечения оптимального соотношения температурного режима плавильной печи и скорости вытягивания волокна из расплава, что позволит получать непрерывные элементарные волокна толщиной менее 4 мкм.

В основу изобретения также положена задача создания такого состава для получения неорганического волокна согласно заявляемому способу, в котором благодаря определенному набору и соотношению компонентов возможно получить оптимальное соотношение вязкости и поверхностного натяжения волокна, что позволит обеспечить оптимальное соотношение температуры расплава и скорости вытягивания волокна для получения нити диаметром менее 4 мкм.

Поставленная задача достигается тем, что в способе получения неорганического волокна путем подачи минералов в плавильную печь, получения расплава, его гомогенизации, подачи в зону формирования волокна для вытягивания его из расплава и последующего наматывания на нитесборник согласно изобретению, температуру в плавильной печи устанавливают 1705 - 2000oC, а вытягивание волокон производят со скоростью 5505 - 6500 м/мин.

Поставленная задача решается также тем, что в состав для получения неорганических волокон, включающий SiO2, Al2O3, TiO2, Fe2O3, FeO, CaO, MgO, MnO и R2O согласно изобретению, дополнительно включен P2O5 при следующем соотношении компонентов, мас.%:

SiO2 - 55,30 - 60,01

Al2O3 - 18,01 - 19,90

TiO2 - 0,02 - 1,02

Fe2O3+ FeO - 7,51 - 8,03

CaO - 4,52 - 9,50

MnO - 3,01 - 3,95

P2O5 - 0,12 - 0,14

MgO - 0,10 - 0,15

K2O - 1,40 - 3,60

Na2O - 1,80 - 1,90

Благодаря указанному соотношению компонентов и его процентному содержанию возможно повысить температуру плавильной печи до 1705 - 2000oC и получить расплав без расслоения и такой вязкости, которая позволяет производить вытягивание волокна из расплаа с более высокой скоростью (по отношению к прототипу), что обеспечивает, в свою очередь, получение нити менее 4 мкм.

Способ осуществляют следующим образом.

Минералы в соотношениях, указанных в таблице 1 (см. ниже) подают в плавильную печь, в которой устанавливают температуру 1705 - 2000oC. Получают расплав, который выдерживают некоторое время для его гомогенизации. Затем уже гомогенизированный расплав подают в зону формирования волокна, которая представляет собой питатель с фильерами, в которых поддерживают температуру, превышающую температуру кристаллизации полученного расплава. Из фильер расплав выходит в виде капель, образующих луковицы, которые при увеличении их массы отрываются от фильер, образуя волокна. Вначале эти волокна собирают непрерывным вытягиванием вручную, затем полученный пучок заводят в канавку ролика нитесборника, быстро отводя их под углом 60 - 80o, наматывают нить на торец бобины и включают наматывающий механизм. Вытягивание волокон производят без остановок и замедлений со скоростью 5505 - 6500 м/мин. Для предупреждения взаимного трения в пучке волокон, их взаимного склеивания производят замасливание волокон на валковом замасливающем устройстве.

В таблице 2 представлены соотношения диаметров элементарных волокон, полученных в зависимости от температуры расплава, скорости вытягивания волокна и составов согласно таблице 1.

Кроме того, экспериментальная проверка химической устойчивости полученных волокон к 2N раствору HCl показала, что последний более кислотостойкий, чем волокна по прототипу (см. таблицу 3).

Химическую устойчивость непрерывных волокон к 2N раствору HCl определяли по потере массы с поверхности 5000 кв.см при трехчасовом кипячении (таблица 3).

Источники информации

1.RU 2018491 C1, 28.02.79

2.SU 649670 A, 03.03.79.

Класс C03B37/02 вытягиванием или выдавливанием

способ изготовления оптического волокна -  патент 2475459 (20.02.2013)
оптическое волокно с легированной оловом переходной частью между сердцевиной и оболочкой -  патент 2463266 (10.10.2012)
способ изготовления пряди композиционного материала и устройство для его осуществления -  патент 2454376 (27.06.2012)
способ производства волокон из горных пород и установка для его осуществления "модуль кибол-гранула" -  патент 2452696 (10.06.2012)
способы получения оптических волокон -  патент 2448916 (27.04.2012)
способ производства высокосиликатных волокон из горных пород, установка для его осуществления "модуль кибол-s", высокосиликатное непрерывное волокно, высокосиликатное рубленое волокно, высокосиликатное грубое волокно и высокосиликатное штапельное волокно, полученные названным способом -  патент 2422388 (27.06.2011)
способ производства оптических волокон и устройство для производства оптических волокон -  патент 2409525 (20.01.2011)
способ изготовления оптического волокна -  патент 2402497 (27.10.2010)
способ получения минеральных волокон -  патент 2370461 (20.10.2009)
способ изготовления одномодового волоконного световода, сохраняющего поляризацию излучения -  патент 2301782 (27.06.2007)

Класс C03C13/02 содержащие соединения титана или циркония

стекло для производства непрерывного стекловолокна -  патент 2513903 (20.04.2014)
стекло для производства стекловолокна и высокотемпературное кремнеземное волокно на его основе -  патент 2471731 (10.01.2013)
устойчивое к высоким температурам неорганическое волокно на основе оксида кремния и способ его производства -  патент 2469001 (10.12.2012)
состав стекла, устойчивого к воздействию химических сред, для изготовления упрочняющих стеклонитей -  патент 2466947 (20.11.2012)
термостойкое стекловолокно -  патент 2436742 (20.12.2011)
состав стекла, стойкого к воздействию щелочей и кислот, полученное из него стекловолокно и композит, содержащий стекловолокно -  патент 2406702 (20.12.2010)
композиции стекловолокна -  патент 2358928 (20.06.2009)
стекло для стекловолокна -  патент 2320588 (27.03.2008)
стекловолокнистый армирующий тканый наполнитель стеклополимерных композиционных материалов -  патент 2245477 (27.01.2005)
стекло для выработки волокна -  патент 2225851 (20.03.2004)
Наверх