способ определения температуры в зоне трения
Классы МПК: | G01K7/02 с использованием термоэлектрических элементов, например термопар G01K13/08 при вращательном движении |
Автор(ы): | Корндорф С.Ф., Подмастерьев К.В., Сковпень В.Н. |
Патентообладатель(и): | Орловский государственный технический университет |
Приоритеты: |
подача заявки:
1998-10-26 публикация патента:
20.03.2000 |
Изобретение относится к термометрии и может быть использовано для измерения температуры в зоне сухого трения скользящих деталей, например подшипников скольжения. Способ определения температуры в зоне трения заключается в том, что пару трения включают в электрическую цепь с образованием естественной термопары и измеряют величину генерируемой в зоне трения ЭДС. До начала измерений определяют распределение термоэлектрической чувствительности естественной термопары по поверхности вращающейся детали. Затем измеряют значения ЭДС в функции угла поворота вращающейся детали. Значение температуры для отдельного участка определяют по соответствующим ему значениям термоЭДС и термоэлектрической чувствительности. Изобретение решает задачу повышения достоверности определения температуры в зоне трения вращающейся и неподвижной деталей из электропроводящих материалов. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
Способ определения температуры в зоне трения, заключающийся в том, что пару трения включают в электрическую цепь с образованием естественной термопары и измеряют величину генерируемой в зоне трения ЭДС, по величине которой судят о температуре, отличающийся тем, что до начала измерений определяют распределение термоэлектрической чувствительности естественной термопары по поверхности вращающейся детали, измеряют значения ЭДС в функции угла поворота вращающейся детали, а значение температуры для отдельного участка определяют по соответствующим ему значениям термоЭДС и термоэлектрической чувствительности.Описание изобретения к патенту
Изобретение относится к термометрии и может быть использовано преимущественно для измерения температуры в зоне сухого трения скользящих деталей из электропроводящих материалов, например подшипников скольжения. Известен способ измерения температуры в зоне трения, заключающийся в изготовлении в неподвижной детали наклонного канала, соединяющего зону трения с наружной поверхностью детали, установке в канале рабочего спая термопары, находящегося в стабильном тепловом контакте с зоной трения, измерении значения генерируемой термопарой термоЭДС и определении по данному значению температуры в зоне трения с помощью градуировочной характеристики /1/. Недостаток данного способа в том, что при использовании искусственной термопары процесс измерения температуры может сопровождаться существенными погрешностями в результате отождествления температуры в контакте трущихся поверхностей с температурой в зоне заделки рабочего спая термопары. Кроме того, рассмотренная схема измерения температуры обладает большой инерционностью, а изменение конструкции пары трения с целью введения искусственной термопары в неподвижную деталь не всегда возможно. Наиболее близким по технической сущности к заявляемому способу по совокупности признаков является способ определения температуры в зоне трения, заключающийся в том, что пару трения включают в электрическую цепь с образованием естественной термопары и измеряют генерируемую термоЭДС, по величине которой судят о температуре контактного взаимодействия /2/. Способ принят за прототип. Однако, в данном способе термоЭДС определяют милливольтметром, который вследствие того, что его постоянная времени имеет достаточно большое значение, измеряет некоторое усредненное значение термоЭДС. При движении подвижной поверхности в зону трения последовательно попадают различные участки этой поверхности. В результате влияния различных факторов отдельные участки нагреваются по-разному, температура в зоне трения постоянно изменяется, и ее значение является индивидуальным для каждого участка подвижной поверхности. В то же время определение температуры по результатам измерения милливольтметром некоторого усредненного значения термоЭДС, генерируемой в контакте трущихся поверхностей согласно известному способу, приводит к получению значения температуры в зоне трения, которое является лишь некоторой усредненной оценкой значения температуры в зоне трения для отдельных участков поверхности вращающейся детали, при этом даже не является среднеарифметическим значением этой температуры. Таким образом, достоверность результатов определения температуры в зоне трения известным способом ограничена. Заявляемое изобретение решает задачу повышения достоверности определения температуры в зоне трения вращающейся и неподвижной деталей из электропроводящих материалов за счет определения температуры в зоне трения для отдельных участков поверхности вращающейся детали. Это достигается тем, что в известном способе определения температуры в зоне трения, заключающемся в том, что пару трения включают в электрическую цепь с образованием естественной термопары и измеряют величину генерируемой в зоне трения ЭДС, по величине которой судят о температуре, согласно изобретению, до начала измерений определяют распределение термоэлектрической чувствительности естественной термопары по поверхности вращающейся детали, измеряют значения ЭДС в функции угла поворота вращающейся детали, а значение температуры для отдельного участка определяют по соответствующим ему значениям термоЭДС и термоэлектрической чувствительности. В соответствии с предлагаемым способом усреднение значения температуры в зоне трения вращающейся и неподвижной деталей исключается при измерении значения термоЭДС в функции угла поворота вращающейся детали. Предварительный анализ распределения термоэлектрической чувствительности поверхности вращающейся детали позволяет для каждого участка этой поверхности по полученным значениям термоЭДС определить значение температуры в зоне трения. Этим достигается указанный технический результат - определение температуры в зоне трения для отдельных участков поверхности вращающейся детали, что приводит к повышению достоверности. Сущность изобретения поясняется чертежами. На фиг. 1 представлена схема устройства для реализации способа определения температуры в зоне трения; на фиг. 2 - диаграммы, иллюстрирующие пример реализации способа. Пара трения, образованная вращающейся деталью 1 (фиг. 1, а) и неподвижной деталью 2, с помощью токосъемников 3 и 4 включена в электрическую регистрирующую цепь электронного запоминающего осциллографа 5. Фотоэлектрический преобразователь 6 установлен в непосредственной близости от диска 7 с меткой, жестко закрепленного на вращающейся детали 1. Выход фотоэлектрического преобразователя 6 связан со входом формирователя 8 импульсов, выход которого соединен со входом внешней синхронизации электронного запоминающего осциллографа 5. Диск 7 с меткой может быть выполнен в виде диска с пазом (фиг. 1, б). Фотоэлектрический преобразователь 6 может быть реализован, например, с помощью оптопары, а формирователь 8 импульсов - с помощью интегрального компаратора /3/. Способ осуществляют следующим образом. Вращающуюся деталь 1 и неподвижную деталь 2 с помощью токосъемников 3 и 4 включают в электрическую цепь с образованием естественной термопары. Предварительно выбирают число n участков поверхности вращающейся детали 1, и при отсутствии вращения определяют с помощью милливольтметра и термометра (на схеме не показаны) значения термоэлектрической чувствительности Si для каждого участка поверхности вращающейся детали. Затем измеряют при работе пары трения с помощью электронного запоминающего осциллографа 5 величину генерируемой в зоне трения ЭДС в функции угла поворота вращающейся детали 1. По величине ЭДС судят о температуре в зоне трения вращающейся 1 и неподвижной детали 2. Количество n участков поверхности вращающейся детали 1 выбирают с учетом углового размера зоны трения, определяемого геометрией вращающейся 1 и неподвижной детали 2. При этом угловой размер каждого участка принимают большим или равным угловому размеру зоны трения. Участку поверхности вращающейся детали 1, центр которого совпадает с меткой на диске 7, присваивают условный порядковый номер N = 1. По измеренным значениям температуры зоны контакта вращающейся 1 и неподвижной 2 деталей и термоЭДС, генерируемой в зоне контакта деталей, находят по общепринятой методике значение термоэлектрической чувствительности S1 для первого участка поверхности вращающейся детали 1. Поворачивают вращающуюся деталь 1 на угол
1. А.с. 1191752 СССР, МКИ G 01 K 7/02. Способ установки термопары в зоне трения деталей/ А.В. Чичинадзе, Л.В. Красниченко, А.Т. Бородин и М.Л. Ерихов. Опубл. 15.11.85. Бюл. изобрет. N 42. 2. А. с. 1640602 СССР, МКИ G 01 N 3/56. Стенд для испытаний на трение и износ образцов материала/ А.Л. Айрикян, А.Ю. Браилов и С.С. Фотти. Опубл. 07.04.91. Бюл. изобрет. N 13 - прототип. 3. Цифровые и аналоговые интегральные микросхемы: Справочник/ С.В. Якубовский, Л.И. Нессельсон, В.И. Кулешова и др.; Под ред. С.В. Якубовского. - М.: Радио и связь, 1990. - с. 360.
Класс G01K7/02 с использованием термоэлектрических элементов, например термопар
Класс G01K13/08 при вращательном движении