способ получения металлической пены

Классы МПК:C25D1/08 перфорированные или пористые изделия, например сита
C23C18/24 с использованием кислых водных растворов
H01M4/80 пористые пластины, например спеченные носители
Автор(ы):, , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Новосибирский завод химконцентратов",
Институт неорганической химии СО РАН
Приоритеты:
подача заявки:
2000-05-11
публикация патента:

Изобретение относится к прикладной электрохимии, а конкретно к технологии получения объемной пористой металлической пены, которая может быть применена для изготовления электродов химических источников тока, а также в процессах изготовления фильтров или носителей для катализаторов. Изобретение позволяет изготовить металлическую пену повышенной прочности, что достигается предварительным травлением пенополиуретановых заготовок перед металлизацией водным раствором, содержащим серную кислоту 800-1500 г/л, двухромово-кислый калий 10-50 г/л и сернокислый хром (III) 10-50 г/л. 3 ил., 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

Способ получения металлической пены, включающий химическую обработку исходного пенополиуретана, металлизацию и термическое удаление полимера, отличающийся тем, что химическую обработку проводят водным раствором, содержащим 800-1500 г/л серной кислоты, 10-50 г/л двухромово-кислого калия, 10-50 г/л сернокислого хрома (III).

Описание изобретения к патенту

Изобретение относится к прикладной электрохимии, а конкретно к технологии получения объемной пористой металлической пены, которая может быть применена для изготовления электродов химических источников тока, а также в процессах изготовления фильтров или носителей для катализаторов.

Известен способ получения пористой трехмерной металлической структуры, включающий металлизацию полимерной основы, например пенополиуретана, и удаление полимера при термообработке, в котором предварительную металлизацию проводят металлическим порошком с последующим электроосаждением плотного слоя металла (ЕР 0643432, МКИ Н 01 М 4/80, опубл. 15.03.1995 г.).

Недостатками этого способа являются ограниченность его применения только для получения относительно крупнопористых структур (что определяется размером частиц исходных металлических порошков), а также недостаточная прочность полученных материалов из-за высокой дефектности прилегающей к порошку внутренней поверхности электроосажденного слоя металла.

Известен также способ получения никелевой пены, в котором металлизацию полимерной основы проводят осаждением никеля из газовой фазы, содержащей карбонил никеля (US 4957543, МКИ С 22 В 5/20, B 22 F 1/00, опубл. 16.06.1989 г. ). Таким образом получается объемная металлическая структура, имеющая повышенную электропроводность и хорошие механические свойства.

Недостатками описанного способа являются громоздкость технологии и работа с высокотоксичными соединениями (оксид углерода (II), карбонил никеля), что существенно удорожает полученный продукт.

Наиболее близким к предлагаемому является способ получения объемной пористой металлической структуры, включающий предварительную металлизацию полимерной основы, химическое или электрохимическое осаждение более толстого слоя металла и термическое удаление полимера, в котором предварительная металлизация проводится напылением в вакууме, а исходная полимерная основа из пенополиуретана перед металлизацией подвергается химической обработке (травлению) для вскрытия запечатанных пор (US 4882232, МКИ С 23 С 14/34, C 25 D 5/36, опубл. 21.11.1989 г.). Обработка проводится 6 N раствором едкого кали при повышенной температуре.

Недостатком этого способа является неполное удаление тонких стенок пузырей при химической обработке, что увеличивает нерегулярность и дефектность структуры и, в конечном счете, снижает прочность полученной металлической пены.

Задачей предлагаемого изобретения является повышение прочности металлической пены, получаемой металлизацией пенополиуретана (поролона). Поставленная задача решается тем, что в известном способе получения металлической пены, включающем химическую обработку исходного пенополиуретана, металлизацию и термическое удаление полимера, химическую обработку проводят водным раствором травителя, содержащим серную кислоту, двухромовокислый калий и сернокислый хром (III). Этот травитель обладает растворяющим действием по отношению к полимеру и поэтому не только вскрывает закрытые поры, но и удаляет тонкие пленки и остатки пузырей между нитями объемной структуры поролона. В результате получается более гладкая и регулярная решетка с уменьшенной плотностью поверхностных дефектов, благодаря чему увеличивается прочность созданного на этой решетке пенометалла.

Отличительным признаком изобретения является применение для химической обработки водного раствора, содержащего 800-1500 г/л серной кислоты, 10-50 г/л двухромовокислого калия, 10-50 г/л сернокислого хрома (III). Выбор указанных диапазонов концентраций определяется следующим. При концентрации серной кислоты более 1500 г/л интенсивность травления значительно возрастает, что приводит к резкому снижению прочности полимерной заготовки, вплоть до полного ее разрушения. При концентрации кислоты менее 800 г/л скорость травления существенно снижается и необходимое время обработки неоправданно возрастает. Аналогично, хотя менее жестко, влияет на ход травления и изменение концентрации двухромовокислого калия. Поддержание в рекомендуемых пределах концентрации сульфата хрома (III) обеспечивает задубливание травленого пенополиуретана, снижает его разбухание при травлении и потерю прочности.

Предлагаемый способ состоит в следующем.

Отрезки поролона погружают в травитель на несколько минут, переносят в ванну с водой, затем тщательно промывают. Травленые заготовки подвергают химическому никелированию, затем завешивают в ванну обычного матового гальванического никелирования, где проводят наращивание слоя никеля необходимой толщины. Полученные заготовки промывают, сушат и подвергают термообработке сначала на воздухе для удаления полимера, затем в восстановительной атмосфере для удаления оксидов и снятия напряжений.

Пример 1. Получение пенометалла из необработанного поролона.

Пластинки поролона 50х120х0,8-1,5 мм, имеющего поры размером 0,3-0,4 мм, подвергали известной процедуре химического никелирования с предварительной активацией поверхности раствором хлорида палладия. Металлизированные заготовки зажимали токосъемником и переносили в ванну гальванического никелирования, где осаждали никель до плотности 300-500 г/м2 видимой поверхности образца. Никелированные пластинки выдерживали на воздухе при температуре 500-550oС в течение 20-30 мин, затем отжигали в аргоно-водородной атмосфере при 740-780oС в течение одного часа.

Пример 2. Получение пенометалла из поролона, обработанного щелочным травителем (по прототипу).

Пластинки поролона тех же размеров обрабатывали водным 6 N раствором едкого кали при температуре 80oС в продолжение 1 ч, промывали водой и дальнейшую обработку проводили в режимах, указанных в примере 1.

Пример 3. Получение пенометалла из поролона, обработанного кислотным травителем (предлагаемый способ).

Пластинки поролона тех же размеров обрабатывали водным раствором, содержащим 1200 г/л серной кислоты, 30 г/л двухромовокислого калия, 20 г/л сернокислого хрома (III). Обработку проводили при комнатной температуре в продолжение 3 мин. Травленые пластинки промывали водой в две стадии и дальнейшую обработку (металлизацию и т.д.) проводили по режимам, указанным в примере 1.

На фиг. 1-3 приведены микрофотографии полученных образцов пенометалла. Можно видеть, что в структуре пенометалла из нетравленого поролона присутствует значительное количество стенок пузырей и лохмотьев (остатков) таких пленок. В структуре пенометалла из поролона, обработанного щелочью, не остается невскрытых пузырей, но сохраняется значительное количество пленок. В тоже время кислотное травление по предлагаемому способу удаляет практически все пленки и сохраняет тонкую ажурную структуру пены с ровной и гладкой поверхностью нитей.

Измерение механических характеристик пенометалла при растяжении проводили с помощью разрывной машины ИР 5061-0,05 на полосках шириной 10способ получения металлической пены, патент № 21888800,l мм, длиной 40 мм. Скорость нагружения образцов составляла 100 мм/мин. Предел прочности материала способ получения металлической пены, патент № 2188880, МПа, находили по формуле

способ получения металлической пены, патент № 2188880

где Р- усилие разрыва, Н,

способ получения металлической пены, патент № 2188880 - плотность никеля, равная 8,91 г/см3,

b - ширина образца, см,

способ получения металлической пены, патент № 2188880пов - поверхностная плотность образца, г/см2,

10-2 - масштабный фактор, учитывающий соотношение единиц измерения.

В таблице приведены результаты измерений и расчетов.

Можно видеть, что химическая обработка поролона по предлагаемому способу существенно увеличивает как предел прочности материала образца, так и его относительное удлинение, что свидетельствует об увеличении его пластичности. Дополнительным преимуществом предлагаемого способа является возможность снижения металлоемкости электрода, изготовленного из такого пенометалла, поскольку механические характеристики готового электрода определяются в основном прочностью и пластичностью электродной основы.

Класс C25D1/08 перфорированные или пористые изделия, например сита

способ получения высокопористого хромаля -  патент 2312159 (10.12.2007)
способ получения высокопористого никеля и его сплавов -  патент 2311470 (27.11.2007)
способ изготовления ножа-сетки электробритвы -  патент 2154570 (20.08.2000)
способ получения тонкостенных деталей -  патент 2121531 (10.11.1998)

Класс C23C18/24 с использованием кислых водных растворов

Класс H01M4/80 пористые пластины, например спеченные носители

способ изготовления основы электрода химического источника тока из углеродного войлока с использованием переменного асимметричного тока -  патент 2510548 (27.03.2014)
способ получения никелевой волоконной электродной основы с развитой поверхностью волокон для химических источников тока и полученная этим способом никелевая волоконная основа электрода -  патент 2475896 (20.02.2013)
электрод для ячейки устройства, аккумулирующего энергию, и способ его изготовления -  патент 2444816 (10.03.2012)
перезаряжаемый элемент аккумуляторной батареи -  патент 2438212 (27.12.2011)
способ изготовления порошковых материалов для электродов химических источников тока -  патент 2351436 (10.04.2009)
способ изготовления пористой основы безламельного электрода щелочного аккумулятора -  патент 2291522 (10.01.2007)
способ изготовления кадмиевого электрода для химического источника тока -  патент 2050635 (20.12.1995)
Наверх